vRA7.x services do not register after a restart (2147446)

本文介绍了解决vRealize Automation重启后出现的服务未正确注册问题的方法。通过重新输入SSO凭证并保存设置,等待一段时间后,所有服务将重新注册并恢复正常状态。

After restarting the vRealize Automation Appliance, you experience these symptoms:

  • In the vRealize Appliance’s VAMI page, located at https://<vRA_FQDN_or_IP>:5480 under the Services tab, many services are not REGISTERED, either showing no status or are showing as FAILED.
  • In the /var/log/vmware/vcac/catalina.out file, you see errors similar to:
    vcac: [component="cafe:identity" priority="WARN" thread="tomcat-http--16" tenant context="abmDcLPx" token="a
    bmDcLPx"] com.vmware.vcac.authentication.service.impl.AuthenticationMessageNotificationServiceImpl.loadServiceInfoAndRegisterSolutionUserForTenants:63 - No serviceInfo found for serviceInfoId [e5415d38-21a8-4948-9ea5-4ec968ab2e2c] of serviceType [com.vmware.csp.component.software.service]
    org.springframework.security.authentication.BadCredentialsException: { "error": "invalid_client", "error_description": "Client is not found."

Note: The preceding log excerpts are only examples. Date, time, and environmental variables may vary depending on your environment.

Resolution


To resolve the issue:
  1. Log in to vRealize Automation’s VAMI page configuration at https://vRA_FQDN_or_IP:5480 using root credentials.
  2. Navigate to vRA Settings > SSO.
  3. Re-enter SSO credentials by adding ‘administrator@vsphere.local’ as the user and the associated password.
  4. Click the Save Settings button and wait for vRealize Automation to re-register to Horizon SSO.
  5. Navigate to the Services > refresh to verify that all services are again REGISTERED.
NOTE: This may take approximately 10 minutes for services to fully report back and you may have to log out of the vRealize Automation VAMI and log back in.
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值