Event-driven Programming with CQRS Wechaty

本文介绍了如何通过Wechaty-CQRS模块将Wechaty架构与CQRS模式相结合,以实现更好的DDD集成、解耦和微服务交互。通过示例展示了如何利用CQRS处理消息接收并转化为可操作的命令和查询。阅读这篇博客了解如何构建事件驱动的Wechaty应用。

Command Query Responsibility Segregation (CQRS) is a software architecture pattern that separates the command(write) and query(read) layers.
CQRS, Martin Fowler, 14 July 2011

Wechaty CQRS

After we have refactored the Friday BOT to DDD/CQRS with NestJS (learn more from this blog post), we believe that the Wechaty ecosystem should support the CQRS pattern better.

So this is why we published the wechaty-cqrs NPM module. (GitHub Repo & API Reference)

Motivation

Can we use Wechaty by only sending / receiving the Plain Old JavaScript Object (POJO)?

That’s an Event-driven way, which will give us the following benifites:

  1. Better integration with Domain-driven Design (DDD)
  2. Decouple the sub-systems with the Wechaty instance completely
  3. Enable using Wechaty with Microservices
  4. Make it possible for providing an API endpoint with JSON request/responses
  5. etc.

So we decided to support the Event-driven Architecture by enabling the Event-driven Programming with Wechaty by publishing the wechaty-cqrs NPM module.

Features

  1. Convert Wechaty instance to a messaging bus$ with the from() function.
  2. Well-defined commands, queries, responses, and events payload creators.
  3. A great execute$() helper function for sending the events to the bus and get back the response.
  4. Well-defined events$ for the Wechaty events
  5. Well-defined sayables for build all the message contents
  6. Static typing with TypeScript with all events & streams
  7. Working perfect with the powerful RxJS

Usage

Install

npminstall wechaty-cqrs wechaty

Quick start

Here’s the CQRS version of the Wechaty ding/dong bot:

import * as CQRS    from 'wechaty-cqrs'
import * as WECHATY from 'wechaty'
import { filter, map, mergeMap }  from 'rxjs/operators'

const wechaty = WECHATY.WechatyBuilder.build()
await wechaty.init()

const bus$ = CQRS.from(wechaty)

bus$.pipe(
  filter(CQRS.isActionOf(CQRS.actions.messageReceivedEvent)),
  // MessageReceivedEvent -> Sayable
  map(messageId => CQRS.duck.actions.getSayablePayloadQuery(
    messageReceivedEvent.meta.puppetId,
    messageId,
  )),
  mergeMap(CQRS.execute$(bus$)(CQRS.duck.actions.getSayablePayloadQueryResponse)),
  // Log `sayable` to console
).subscribe(sayable =>
  console.info('Sayable:', sayable),
)

bus$.next(CQRS.duck.actions.startCommand(wechaty.puppet.id))

Getting Started

Here’s a video introduction for CQRS Wechaty with live demo, presented by Huan:

CQRS Wechaty Getting Started

YouTube: https://youtu.be/kauxyPVa0jo

The getting started ding-dong-bot.ts in the video: https://github.com/wechaty/getting-started/blob/main/examples/cqrs/ding-dong-bot.ts

Architectures

Command Query Responsibility Segregation (CQRS) Pattern

Image source: CQRS (command query responsibility segregation)

graph LR
  classDef event fill:DarkGoldenRod
  classDef command fill:blue
  classDef query fill:green

  subgraph Command
    C(VerbNounCommand):::command
  end

  subgraph Response
    RC(VerbNounCommandResponse)
    RQ(GetNounQueryResponse)
  end
    
  subgraph Query
    Q(GetNounQuery):::query
  end

  subgraph Event
    ER(ReceivedEvent):::event
  end

  C-->RC

  ER-->ER

  Q-->RQ

Command

sequenceDiagram
    participant Bus
    participant Redux
    participant Wechaty

    Bus->>Redux: ExecuteCommand
    Redux->>Wechaty: Call
    Wechaty->>Redux: Call Return (void)
    Redux->>Bus: ExecuteCommandResponse

Query

sequenceDiagram
    participant Bus
    participant Redux
    participant Wechaty

    Bus->>Redux: GetNounQuery
    Redux->>Wechaty: Call
    Wechaty->>Redux: Call Return (value)
    Redux->>Bus: GetNounQueryResponse

Event

sequenceDiagram
    participant Bus
    participant Redux
    participant Wechaty

    Wechaty->>Redux: ReceivedEvent
    Redux->>Bus: ReceivedEvent

API Reference

Read CQRS Wechaty API Reference at: https://paka.dev/npm/wechaty-cqrs

Blogs

Resources

内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,涵盖正向与逆向运动学求解、正向动力学控制,并采用拉格朗日-欧拉法推导逆向动力学方程,所有内容均通过Matlab代码实现。同时结合RRT路径规划与B样条优化技术,提升机械臂运动轨迹的合理性与平滑性。文中还涉及多种先进算法与仿真技术的应用,如状态估计中的UKF、AUKF、EKF等滤波方法,以及PINN、INN、CNN-LSTM等神经网络模型在工程问题中的建模与求解,展示了Matlab在机器人控制、智能算法与系统仿真中的强大能力。; 适合人群:具备一定Ma六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)tlab编程基础,从事机器人控制、自动化、智能制造、人工智能等相关领域的科研人员及研究生;熟悉运动学、动力学建模或对神经网络在控制系统中应用感兴趣的工程技术人员。; 使用场景及目标:①实现六自由度机械臂的精确运动学与动力学建模;②利用人工神经网络解决传统解析方法难以处理的非线性控制问题;③结合路径规划与轨迹优化提升机械臂作业效率;④掌握基于Matlab的状态估计、数据融合与智能算法仿真方法; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点理解运动学建模与神经网络控制的设计流程,关注算法实现细节与仿真结果分析,同时参考文中提及的多种优化与估计方法拓展研究思路。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值