Community meeting: generate Wechaty code with LLM & FLAML

FLAML是一个轻量级Python库,专注于机器学习和AI操作的自动化,包括模型和超参数的选择。一篇博客文章展示了如何通过适应性使用多个GPT模型,在提高HumanEval基准测试的准确性(从68%到90%)的同时,降低推理成本18%,优于仅使用GPT-4。Wechaty社区正在开发一个聊天项目,允许开发者通过说明其聊天机器人需求来生成代码。

FLAML (Fast Library for Automated Machine Learning, https://github.com/microsoft/FLAML) is a lightweight Python library for efficient automation of machine learning and AI operations, including selection of models, hyperparameters, and other tunable choices of an application (e.g., inference hyperparameters for foundation models, configurations in MLOps/LMOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations).

It has a very interesting blog post: Achieve More, Pay Less - Use GPT-4 Smartly tells us a case study using the HumanEval benchmark shows that an adaptive way of using multiple GPT models can achieve both much higher accuracy (from 68% to 90%) and lower inference cost (by 18%) than using GPT-4 for coding.

As our Wechaty community is working on a chat project (https://wechaty.js.org/chat) for helping our open-source community developers to not only easily get answer of documentations, but also can ask for generated codes by just telling system their chatbot requirements, as the following screenshot demostrated:

Write a chatbot on WeChat using Wechaty SDK v1.x (with WechatyBuilder) to monitor a room with the following features:

  1. When a user sends a text message to the bot, if the text is “Room A”, then add the user to the “Room A” group; if the text is “Room B”, then add the user to the “Room B” group;
  2. When a user sends an ad message to the “Room B” group:
    1. for the first time, send a warning message to them;
    2. for the second time, remove the user from the room;

Wechaty Chat

Wechaty Community Meeting with Author of FLAML

In this meeting, we invited Chi Wang, the author of FLAML, fireside chat with Tianwei Yue from Wechaty community LLM project.

image credit: The New Open Source LLM that Can Generative Code in Over 80 Programming Languages

内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,涵盖正向与逆向运动学求解、正向动力学控制,并采用拉格朗日-欧拉法推导逆向动力学方程,所有内容均通过Matlab代码实现。同时结合RRT路径规划与B样条优化技术,提升机械臂运动轨迹的合理性与平滑性。文中还涉及多种先进算法与仿真技术的应用,如状态估计中的UKF、AUKF、EKF等滤波方法,以及PINN、INN、CNN-LSTM等神经网络模型在工程问题中的建模与求解,展示了Matlab在机器人控制、智能算法与系统仿真中的强大能力。; 适合人群:具备一定Ma六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)tlab编程基础,从事机器人控制、自动化、智能制造、人工智能等相关领域的科研人员及研究生;熟悉运动学、动力学建模或对神经网络在控制系统中应用感兴趣的工程技术人员。; 使用场景及目标:①实现六自由度机械臂的精确运动学与动力学建模;②利用人工神经网络解决传统解析方法难以处理的非线性控制问题;③结合路径规划与轨迹优化提升机械臂作业效率;④掌握基于Matlab的状态估计、数据融合与智能算法仿真方法; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点理解运动学建模与神经网络控制的设计流程,关注算法实现细节与仿真结果分析,同时参考文中提及的多种优化与估计方法拓展研究思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值