72. Edit Distance
Hard
197930FavoriteShare
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros" Output: 3 Explanation: horse -> rorse (replace 'h' with 'r') rorse -> rose (remove 'r') rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution" Output: 5 Explanation: intention -> inention (remove 't') inention -> enention (replace 'i' with 'e') enention -> exention (replace 'n' with 'x') exention -> exection (replace 'n' with 'c') exection -> execution (insert 'u')
这道题很明显的动态规划,不过重点是要想清楚什么时候用replace,insert和delete;
dp[i][j]表示将word1前i个字符转化成word2前j个字符所需要的最小步骤数;
一开始我一直在想到底什么时候用哪种,后来发现只要选三种中的最小哪种就解决了;
dp[i][j] = min(dp[i-1][j-1](替换),min(dp[i-1][j](word1前i-1个字符就可以转化成word2前j个字符,删除),dp[i][j-1](word1前i个字符只能转换成word2前j-1个字符,插入word[j-1]));
最后做一下空间优化。
class Solution {
public:
int minDistance(string word1, string word2)
{
int len1 = word1.size();
int len2 = word2.size();
vector<int> dp(len2+1,0);
if(len1 == 0) return len2;
if(len2 == 0) return len1;
for(int j = 0;j <= len2; ++j) dp[j] = j;
for(int i = 1; i <= len1; ++i)
{
int pre = i-1;
dp[0] = i;
for(int j=1; j<= len2 ;++j)
{
int cur = dp[j];
if(word1[i-1] == word2[j-1]) dp[j] = pre;
else dp[j] = min(pre,min(dp[j-1],dp[j])) + 1;
pre = cur;
}
}
return dp[len2];
}
};