Redundancy and Recovery Window的区别

本文深入解析了RMAN配置中的Redundancy和RecoveryWindow概念,阐述了它们在备份策略中的作用及相互关系。通过实例说明,帮助读者理解如何在数量与时间窗口上权衡,实现高效且安全的数据备份。

RMAN> CONFIGURE RETENTION POLICY TO REDUNDANCY 7; 

RMAN> CONFIGURE RETENTION POLICY TO recovery window of 7 days;

这两个配置是互斥的,即后设置的会覆盖先设置的。

Redundancy可以理解为是物理上的策略,这个好理解,设置成几就有几份备份
Recovery Window可以理解为是逻辑上的策略,设置成7天,就保证为了恢复到7天的任意一个时间点需要的备份都在
具体的效果还得看你的具体备份策略,比如你一天备一次,那么Redundancy=7也正好能恢复到7天内的时间点了

一个是从数量上考虑(redundancy)
一个事从天数上考虑(recovery window)
假如一天你备份了7次 用的又是Redundancy=7 那么你想恢复到前天的就不可能了

window是基于时间的,时间之窗,超过这个时间的运行delete obsolete将被删除。
redundancy意为冗余度,超过此冗余度的,在运行delete obsolete的时候,将作为过期备份删除

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/24162410/viewspace-1813769/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/24162410/viewspace-1813769/

StreamVLN generates action outputs from continuous video input in an online, multi-turn dialogue manner. Built on LLaVA-Video [2] as the foundational Video-LLM, we extend it for interleaved vision, language, and action modeling. The overall framework of StreamVLN is shown in Figure 1. Webriefly introduce the autoregressive generation in continuous multi-turn dialogues for a streaming VLN process (Section 3.1). For both effective context modeling of long sequence and efficient computation for real-time interaction, StreamVLN has: (1) a fast-streaming dialogue context with a sliding-window KV cache (Section 3.2); and (2) a slow-updating memory via token pruning (Section 3.3). Finally, we describe how we curate the navigation data and incorporate diverse multimodal data for multi-task training (Section 3.4). 2 … Vision Encoder Projector Large Language Model … KV Cache Timeline Temporal Sampling Instruction Token Observation Token Output Action Token Pruned Token Inactive / Current Sliding Window Voxel-based Spatial Pruning Figure1:FrameworkofStreamVLN.Theinputconsistsofalanguageinstructionandastreamof RGBimages.Eachnavigationepisodeisframedasamulti-turndialogue,wheretheagentcontinually queriesforthenextactions. Tosupport long-horizonreasoningwhilemaintainingamanageable contextsizeandlowlatency,weadoptafixed-sizeslidingwindowtoretainrecentdialoguehistory. Thecontextininactivewindowsisupdatedbytokenpruningtotoreducememoryoverhead. 3.1 Preliminary:ContinuousMulti-TurnAutoregressiveGeneration Amulti-turndialoguesessionforVLNconsistsofasequenceofinterleavedobservationsandactions. Ineachdialoguedi=(oi,ai), theVLNmodel receivesanewobservationoi andproducesan actionresponseaiconditionedonboththecurrent inputandthedialoguehistory. Thefull input sequenceatstepiisconstructedas:o1a1o2a2...oi−1ai−1. Inthisstreamingsetting,newtokensfrom oiareappendedtothetokenstreamcontinuously.Theresponseai isgeneratedtoken-by-tokenvia autoregressivedecoding.Foreachdialogueturn,Transformer-basedLLMsfirstperformaprefill phasetoencodeinputtokens,cachingtheirkey/value(KV)statesinattentionlayers.Thesecached KVpairsarethenusedinthedecodingphasetogeneratenewtokens. Ifwedon’tuseKVcache acrossturns,themodelwillrepeatthisprefillingprocessofallprevioustokensforanewdialogue. 3.2 Fast-StreamingDialogueContext Whilemulti-turnKVcachereusecaneliminateover99%ofprefillingtime,itintroducessubstantial memoryoverhead.Asthenumberofdialoguesincreases, theKVcachegrowslinearly(e.g.,2K tokenscanconsumearound5GBofmemory),makinglongsessionsimpractical. Inaddition,existing Video-LLMstendtoexhibitdegradedreasoningperformancewhenprocessingoverlylongcontexts. Tomanagedialoguecontext,weadoptaslidingwindowKVcacheovercontinuousdialogues,re tainingafixednumberNofrecentdialoguesinanactivewindow:Wj=[o(i−N+1)a(i−N+1)...oiai] Whenthewindowreachescapacity,thekey/valuestatesareoffloadedfromtheLLM,andthestatesof non-observationdialoguetokens,suchaspromptsandgeneratedactions,areimmediatelydiscarded. Forthenewslidingwindow,thetokenstatesfrompastwindowsareprocessedintomemorytoken states{M0,...,Mj}(asdetailedinSection3.3).Formally,forthelatestobservationoi,thedecoder generatesaibasedonthecachedtokenstatesandthecurrentwindow’sKVcache: aWj+1 i =Decoder oi,{M0,...,Mj},{k(i−N+1)v(i−N+1),...,k(i−1)v(i−1)} . 3 3.3 Slow-Updating Memory Context Balancing temporal resolution and fine-grained spatial perception within a limited context length remains a key challenge for Video-LLMs. Rather than compressing video tokens at the feature level (e.g., through average pooling), which hinders the reuse of the KV cache from previous dialogues, we retain high image resolution while selectively discarding spatially and temporally redundant tokens. Wefind that this approach better preserves the transferability of Video-LLMs. To reduce the temporal redundancy, we adopt a simple fixed-number sam pling strategy following [5], as vary ing lengths of memory tokens may in duce a temporal duration bias, reduce the model’s robustness across differ ent planning horizons. To further eliminate spatial redundancy across frames, we design a voxel-based spa tial pruning strategy. Specifically, we back-project the 2D image patches from the video stream into a shared 3Dspace using depth information. By Algorithm 1 Voxel-Based Spatial Pruning 1: Voxel map V ∈ ZT×H×W,stride K, threshold θ 2: Pruning Mask M ∈ {0,1}T×H×W 3: Initialize M ← 0, map latest ← ∅ 4: for each token (t,x,y) with Vt,x,y ≥ 0 do 5: 6: 7: p ←⌊t/K⌋, v ←Vt,x,y if (p, v) not in latest or t is newer then latest[(p,v)] ← (t,x,y) end if 8: 9: end for 10: Set Mt,x,y ← 1 for all (t,x,y) ∈ latest 11: For each t, if x,y Mt,x,y < θ · H ·W, set Mt,:,: ← 0 12: return M discretizing this 3D space into uni form voxels, we can track the voxel indices of the patch tokens over time. If multiple tokens from different frames within a given duration are projected into the same voxel, only the token from the most recent observation is retained, as detailed in Algorithm 1. The voxel pruning mask M is then used to select the preserved token states. 3.4 Co-Training with Multi-Source Data. Vision-Language Action Data. We collect navigation-specific training data using the Habitat simulator across multiple pub lic VLN datasets. Specifically, we collect 450K samples (video clips) from 60 Matterport3D [25] (MP3D) environments, sourced from R2R [7], R2R-EnvDrop [26] and RxR [8]. To further improve generalization through increased scene diver sity, we incorporate an additional 300K samples from a subset of ScaleVLN [19], spanning 700 Habitat Matterport3D [27] (HM3D) scenes. In addition, we adopt the DAgger [28] algo rithm to enhance the model’s robustness and generalization abil ity in novel scenes and during error recovery. Using Habitat’s shortest-path follower as the expert policy, we collect corrective demonstrations on model rollouts after the initial training stage. These DAgger-collected samples (240K) are then incorporated MMC4 16% VQA 17% General Multi-modal 33% DAgger 16% MP3D 31% VLA 67% HM3D 20% Figure 2: Co-Training Data Recipe of StreamVLN into the training set for co-training. General Vision-Language Data. To retain the general reasoning capabilities of the pretrained Video-LLM, we incorporate a diverse set of multimodal training data that complements navigation supervision. Specifically, we include 248K video-based visual question-answering (VQA) samples sourced from publicly available datasets LLaVA-Video-178K [29] and ScanQA [30], which combine general video QA with 3D scene understanding to support spatial-temporal and geometric reasoning. To further augment the model’s capacity for multi-turn vision-language interactions, we incorporate 230K interleaved image-text samples from MMC4 [31], which strengthens its ability to parse and generate contextually coherent responses with interleaved visual and textual reasoning.详细解释一下
10-23
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值