【光照】[PBR][漫反射]实现方法对比

【从UnityURP开始探索游戏渲染】专栏-直达

URP BRDF漫反射方法对比

方法名称数学公式特点性能消耗适用场景
Lambert$L_d = k_d * max(0, N·L)$经典模型,能量不守恒★☆☆移动端低配
Half-Lambert$L_d = k_d * (0.5*(N·L)+0.5)^2$增强暗部细节★★☆卡通渲染
Disney Diffuse复杂能量守恒公式物理准确,计算复杂★★★PC/主机高品质
Burley Diffuse基于微表面理论PBR标准,次表面散射近似★★★金属/粗糙度工作流

具体实现方法及示例

Lambert模型(URP默认)

/* by 01022.hk - online tools website : 01022.hk/zh/calcdata.html */
hlsl
// Lighting.hlsl 中的实现
half3 DiffuseLambert(half3 diffuseColor)
{
    return diffuseColor / PI; // 能量归一化
}

// 实际调用示例
half NdotL = saturate(dot(normalWS, light.direction));
half3 lambert = DiffuseLambert(_BaseColor.rgb) * NdotL;

Half-Lambert(Valve改进版)

/* by 01022.hk - online tools website : 01022.hk/zh/calcdata.html */
hlsl
half3 DiffuseHalfLambert(half3 diffuseColor, half NdotL)
{
    half wrap = 0.5 * (NdotL + 1.0);
    return diffuseColor * wrap * wrap;
}

// 调用示例
half3 halfLambert = DiffuseHalfLambert(_BaseColor.rgb, NdotL);

Disney Diffuse(URP Lit.shader使用)

hlsl
// BRDF.hlsl 中的实现
half3 DiffuseDisney(half3 baseColor, half NdotV, half NdotL, half LdotH, half roughness)
{
    half fd90 = 0.5 + 2 * LdotH * LdotH * roughness;
    half lightScatter = (1 + (fd90 - 1) * pow(1 - NdotL, 5));
    half viewScatter = (1 + (fd90 - 1) * pow(1 - NdotV, 5));
    return baseColor * lightScatter * viewScatter / PI;
}

URP实际使用情况

  • 默认采用方案‌:

    • Simple Lit管线:Lambert模型(简化版)
    • Lit管线:Disney Diffuse + Burley改进(见BRDF.hlsl
  • 核心代码路径‌:

    Packages/com.unity.render-pipelines.universal/ShaderLibrary/BRDF.hlsl
    → DirectBDRF()函数
    → DisneyDiffuse()分支
    
  • 性能优化策略‌:

    csharp
    // URP Asset中可关闭高质量漫反射
    UniversalRenderPipelineAsset.asset →
    Lighting → UseRoughnessRefraction = false
    

方法对比

  • 视觉差异‌:
    • Lambert:明暗对比强烈
    • Half-Lambert:暗部提亮约30%
    • Disney:边缘光更自然(菲涅尔效应)
  • 推荐选择‌:
    • 移动端:Lambert(Simple Lit)
    • 主机/PC:Disney(Lit Shader)
    • 风格化:Half-Lambert(需自定义Shader)

URP 2022 LTS版本中,主流的Lit.shader默认使用改进版Disney模型,通过#define _BRDF_BURLEY宏启用。开发者可通过修改BRDF.hlsl中的#define语句切换不同模型。

除了以上Unity URP中涉及到的基于物理光照模型的漫反射实现方式,还有Oren-Nayar模型来实现漫反射

Oren-Nayar模型原理

  • 核心思想‌:

    由Michael Oren和Shree Nayar于1994年提出,基于‌微表面自阴影理论‌,适用于粗糙表面(如布料、砂石)。其公式为:

    $L = k_d * max(0, N·L) * (A + B * max(0, cos(φ_v-φ_l)) * sin(α) * tan(β))$

    $A = 1 - 0.5*(σ²)/(σ²+0.33)$

    $B = 0.45*(σ²)/(σ²+0.09)$

    $α = max(θ_v, θ_l)$

    $β = min(θ_v, θ_l)$

    • σ:表面粗糙度参数(0°-90°)
    • φ:方位角
  • 视觉特性‌:

    • 粗糙表面边缘亮度增强
    • 逆向光时出现"后向散射"效果
    • 相比Lambert更符合真实布料观测

Unity URP中的使用情况

  • 默认未采用原因‌:
    • 性能考量‌:需要额外计算角度和粗糙度(比Lambert多30%指令数)
    • 艺术控制‌:参数物理意义不如PBR直观
    • 光照一致性‌:URP优先保证移动端性能
  • 替代方案‌:
    • 简单场景:使用SimpleLit的Lambert
    • 复杂材质:通过LitShader的Smoothness参数间接控制

手动实现方案

若需在URP中使用Oren-Nayar,可修改BRDF.hlsl

hlsl
// 在BRDF.hlsl中添加
half3 DiffuseOrenNayar(half3 albedo, half roughness, half NdotV, half NdotL, half LdotV)
{
    half sigma2 = roughness * roughness;
    half A = 1.0 - 0.5 * sigma2 / (sigma2 + 0.33);
    half B = 0.45 * sigma2 / (sigma2 + 0.09);

    half s = LdotV - NdotL * NdotV;
    half t = s > 0 ? 1.0 / max(NdotL, NdotV) : 1.0;

    return albedo * (A + B * s * t) * NdotL;
}

适用场景建议

  • 推荐使用情况‌:

    • 风格化渲染(如手绘布料)
    • 考古/地质仿真项目
    • 需要特殊边缘光效果的场景
  • 性能对比‌:

    模型指令数(移动端)内存访问
    Lambert123
    Oren-Nayar385
    Disney456

当前URP 2022 LTS版本中,可通过自定义Shader Graph节点实现Oren-Nayar,但官方未内置因其不符合URP的"性能优先"设计原则。实际项目中建议通过法线贴图+Lambert近似替代。


【从UnityURP开始探索游戏渲染】专栏-直达

(欢迎点赞留言探讨,更多人加入进来能更加完善这个探索的过程,🙏)

Java是一种具备卓越性能与广泛平台适应性的高级程序设计语言,最初由Sun Microsystems(现属Oracle公司)的James Gosling及其团队于1995年正式发布。该语言在设计上追求简洁性、稳定性、可移植性以及并发处理能力,同时具备动态执行特性。其核心特征与显著优点可归纳如下: **平台无关性**:遵循“一次编写,随处运行”的理念,Java编写的程序能够在多种操作系统与硬件环境中执行,无需针对不同平台进行修改。这一特性主要依赖于Java虚拟机(JVM)的实现,JVM作为程序与底层系统之间的中间层,负责解释并执行编译后的字节码。 **面向对象范式**:Java全面贯彻面向对象的设计原则,提供对封装、继承、多态等机制的完整支持。这种设计方式有助于构建结构清晰、模块独立的代码,提升软件的可维护性与扩展性。 **并发编程支持**:语言层面集成了多线程处理能力,允许开发者构建能够同时执行多项任务的应用程序。这一特性尤其适用于需要高并发处理的场景,例如服务器端软件、网络服务及大规模分布式系统。 **自动内存管理**:通过内置的垃圾回收机制,Java运行时环境能够自动识别并释放不再使用的对象所占用的内存空间。这不仅降低了开发者在内存管理方面的工作负担,也有效减少了因手动管理内存可能引发的内存泄漏问题。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值