题目描述:
题目大意:有n条路,每条路有一个难度值c,一个人有一个武力值,当武力值>难度值时,可以花费floor((1.0+sqrt(5)/2*c[i]*c[i])的时间逃脱,或者当天尝试失败,武力值+c[i]。求逃脱的期望天数
题解:概率与期望DP
f[i]表示武力值为i的期望值。
c[j]>i f[i]+=tj*p
c[j]<=i f[i]+=(f[i+c[j]]+1)*p
p是选择每一条路的概率。最终的答案就是f[F].
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define N 100003
using namespace std;
int n,f,c[N];
double dp[N],t[N];
double calc(double i)
{
return (int)((1.0+sqrt(5))/2*i*i);
}
int main()
{
freopen("a.in","r",stdin);
while (scanf("%d%d",&n,&f)!=EOF) {
memset(dp,0,sizeof(dp)); int maxn=0;
for (int i=1;i<=n;i++)
scanf("%d",&c[i]),maxn=max(maxn,c[i]);
double p=1.0/(double)n;
//cout<<calc(3)<<endl;
for (int i=maxn*2+f;i>=f;i--) {
for (int j=1;j<=n;j++) {
if (i>c[j]) dp[i]+=(double)calc(c[j])*p;
else dp[i]+=(dp[i+c[j]]+1)*p;
}
// cout<<i<<" "<<dp[i]<<endl;
}
printf("%.3lf\n",dp[f]);
}
}