Java虚拟机学习 - 体系结构 内存模型

本文详细介绍了Java虚拟机(JVM)的内存布局,包括方法区、虚拟机栈、本地方法栈、堆以及程序计数器的功能与特性。同时,对直接内存的概念进行了补充说明。

  • 一:Java技术体系模块图

  • 二:JVM内存区域模型

1.方法区

也称"永久代” 、“非堆”,  它用于存储虚拟机加载的类信息、常量、静态变量、是各个线程共享的内存区域。默认最小值为16MB,最大值为64MB,可以通过-XX:PermSize 和 -XX:MaxPermSize 参数限制方法区的大小。

运行时常量池:是方法区的一部分,Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池,用于存放编译器生成的各种符号引用,这部分内容将在类加载后放到方法区的运行时常量池中。

2.虚拟机栈

描述的是Java 方法执行的内存模型:每个方法被执行的时候 都会创建一个“栈帧”用于存储局部变量表(包括参数)、操作栈、方法出口等信息。每个方法被调用到执行完的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。声明周期与线程相同,是线程私有的

 局部变量表存放了编译器可知的各种基本数据类型(boolean、byte、char、short、int、float、long、double)、对象引用(引用指针,并非对象本身),其中64位长度的long和double类型的数据会占用2个局部变量的空间,其余数据类型只占1个。局部变量表所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在栈帧中分配多大的局部变量是完全确定的,在运行期间栈帧不会改变局部变量表的大小空间。

3.本地方法栈

 与虚拟机栈基本类似,区别在于虚拟机栈为虚拟机执行的java方法服务,而本地方法栈则是为Native方法服务。

4.堆 

也叫做java 堆、GC堆是java虚拟机所管理的内存中最大的一块内存区域,也是被各个线程共享的内存区域,在JVM启动时创建。该内存区域存放了对象实例及数组(所有new的对象)。其大小通过-Xms(最小值)和-Xmx(最大值)参数设置,-Xms为JVM启动时申请的最小内存,默认为操作系统物理内存的1/64但小于1G,-Xmx为JVM可申请的最大内存,默认为物理内存的1/4但小于1G,默认当空余堆内存小于40%时,JVM会增大Heap到-Xmx指定的大小,可通过-XX:MinHeapFreeRation=来指定这个比列;当空余堆内存大于70%时,JVM会减小heap的大小到-Xms指定的大小,可通过XX:MaxHeapFreeRation=来指定这个比列,对于运行系统,为避免在运行时频繁调整Heap的大小,通常-Xms与-Xmx的值设成一样。

由于现在收集器都是采用分代收集算法,堆被划分为新生代和老年代。新生代主要存储新创建的对象和尚未进入老年代的对象。老年代存储经过多次新生代GC(Minor GC)任然存活的对象。

新生代:

 程序新创建的对象都是从新生代分配内存,新生代由Eden Space和两块相同大小的Survivor Space(通常又称S0和S1或From和To)构成,可通过-Xmn参数来指定新生代的大小,也可以通过-XX:SurvivorRation来调整Eden Space及Survivor Space的大小。

老年代:

用于存放经过多次新生代GC任然存活的对象,例如缓存对象,新建的对象也有可能直接进入老年代,主要有两种情况:①.大对象,可通过启动参数设置-XX:PretenureSizeThreshold=1024(单位为字节,默认为0)来代表超过多大时就不在新生代分配,而是直接在老年代分配。②.大的数组对象,切数组中无引用外部对象。

老年代所占的内存大小为-Xmx对应的值减去-Xmn对应的值。

5.程序计数器 

是最小的一块内存区域,它的作用是当前线程所执行的字节码的行号指示器,在虚拟机的模型里,字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、异常处理、线程恢复等基础功能都需要依赖计数器完成。

  • 三:直接内存

直接内存并不是虚拟机内存的一部分,也不是Java虚拟机规范中定义的内存区域。jdk1.4中新加入的NIO,引入了通道与缓冲区的IO方式,它可以调用Native方法直接分配堆外内存,这个堆外内存就是本机内存,不会影响到堆内存的大小。

             本文原文链接:http://blog.youkuaiyun.com/java2000_wl/article/details/8009362

C语言-光伏MPPT算法:电导增量法扰动观察法+自动全局搜索Plecs最大功率跟踪算法仿真内容概要:本文档主要介绍了一种基于C语言实现的光伏最大功率点跟踪(MPPT)算法,结合电导增量法与扰动观察法,并引入自动全局搜索策略,利用Plecs仿真工具对算法进行建模与仿真验证。文档重点阐述了两种经典MPPT算法的原理、优缺点及其在不同光照和温度条件下的动态响应特性,同时提出一种改进的复合控制策略以提升系统在复杂环境下的跟踪精度与稳定性。通过仿真结果对比分析,验证了所提方法在快速性和准确性方面的优势,适用于光伏发电系统的高效能量转换控制。; 适合人群:具备一定C语言编程基础和电力电子知识背景,从事光伏系统开发、嵌入式控制或新能源技术研发的工程师及高校研究人员;工作年限1-3年的初级至中级研发人员尤为适合。; 使用场景及目标:①掌握电导增量法与扰动观察法在实际光伏系统中的实现机制与切换逻辑;②学习如何在Plecs中搭建MPPT控制系统仿真模型;③实现自动全局搜索以避免传统算法陷入局部峰值问题,提升复杂工况下的最大功率追踪效率;④为光伏逆变器或太阳能充电控制器的算法开发提供技术参考与实现范例。; 阅读建议:建议读者结合文中提供的C语言算法逻辑与Plecs仿真模型同步学习,重点关注算法判断条件、步长调节策略及仿真参数设置。在理解基本原理的基础上,可通过修改光照强度、温度变化曲线等外部扰动因素,进一步测试算法鲁棒性,并尝试将其移植到实际嵌入式平台进行实验验证。
【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)​ 内容概要:本文围绕动态环境下多无人机系统的协同路径规划与防撞问题展开研究,提出基于Matlab的仿真代码实现方案。研究重点在于在复杂、动态环境中实现多无人机之间的高效协同飞行与避障,涵盖路径规划算法的设计与优化,确保无人机集群在执行任务过程中能够实时规避静态障碍物与动态冲突,保障飞行安全性与任务效率。文中结合智能优化算法,构建合理的成本目标函数(如路径长度、飞行高度、威胁规避、转弯角度等),并通过Matlab平台进行算法验证与仿真分析,展示多机协同的可行性与有效性。; 适合人群:具备一定Matlab编程基础,从事无人机控制、路径规划、智能优化算法研究的科研人员及研究生。; 使用场景及目标:①应用于灾害救援、军事侦察、区域巡检等多无人机协同任务场景;②目标是掌握多无人机系统在动态环境下的路径规划与防撞机制,提升协同作业能力与自主决策水平;③通过Matlab仿真深入理解协同算法的实现逻辑与参数调优方法。; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,重点关注目标函数设计、避障策略实现与多机协同逻辑,配合仿真结果分析算法性能,进一步可尝试引入新型智能算法进行优化改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值