LeetCode 64: Minimum Path Sum

本文介绍了一个经典的算法问题——寻找二维网格中从左上角到右下角的最小路径和。详细阐述了递归方法结合动态规划思想解决该问题的过程,并提供了一段C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Difficulty: 3

Frequency: 3


Problem:

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.


Solution:

class Solution {
public:
    int minPathSum(vector<vector<int> > &grid) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        vector<vector<int> >pathSumMatrix(grid);
        for (int i = 0; i<grid.size(); i++)
        {
            for (int j = 0; j<grid[i].size(); j++)
            {
                pathSumMatrix[i][j] = -1;
            }
        }
        pathSumMatrix[0][0] = grid[0][0];
        return minPathSumRecursive(grid, pathSumMatrix, grid.size() - 1, grid[0].size() - 1);
    }
    int minPathSumRecursive(vector<vector<int> > &grid, vector<vector<int> > &pathSumMatrix, int i_row, int i_col)
    {
        if (pathSumMatrix[i_row][i_col]!=-1)
            return pathSumMatrix[i_row][i_col];
        
        int i_up = i_row==0?0x7FFFFFFF:minPathSumRecursive(grid, pathSumMatrix, i_row - 1, i_col);
        int i_left = i_col==0?0x7FFFFFFF:minPathSumRecursive(grid, pathSumMatrix, i_row, i_col - 1);
        return pathSumMatrix[i_row][i_col] = (i_up<i_left?i_up:i_left) + grid[i_row][i_col];
    }
};


Notes:

No comment. Haha.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值