系列文章目录
提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加
这是为了面试所准备的一些重点难点,所以自己做一个总结
提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
提示:以下是本篇文章正文内容,下面案例可供参考
一、AQS
AQS详解
来源:https://blog.youkuaiyun.com/mulinsen77/article/details/84583716
二、Sync和lock的区别
原文链接:https://blog.youkuaiyun.com/gm371200587/article/details/88173030
两者区别:
1.首先synchronized是java内置关键字,在jvm层面,Lock是个java类;
2.synchronized无法判断是否获取锁的状态,Lock可以判断是否获取到锁;
3.synchronized会自动释放锁(a 线程执行完同步代码会释放锁 ;b 线程执行过程中发生异常会释放锁),Lock需在finally中手工释放锁(unlock()方法释放锁),否则容易造成线程死锁;
4.用synchronized关键字的两个线程1和线程2,如果当前线程1获得锁,线程2线程等待。如果线程1阻塞,线程2则会一直等待下去,而Lock锁就不一定会等待下去,如果尝试获取不到锁,线程可以不用一直等待就结束了;
5.synchronized的锁可重入、不可中断、非公平,而Lock锁可重入、可判断、可公平(两者皆可)
6.Lock锁适合大量同步的代码的同步问题,synchronized锁适合代码少量的同步问题。
7.最重要的是Lock是一个接口,而synchronized是一个关键字,synchronized放弃锁只有两种情况:①线程执行完了同步代码块的内容②发生异常;而lock不同,它可以设定超时时间,也就是说他可以在获取锁时便设定超时时间,如果在你设定的时间内它还没有获取到锁,那么它会放弃获取锁然后响应放弃操作。
三、BIO NIO AIO 的区别
原文链接:https://blog.youkuaiyun.com/guanghuichenshao/article/details/79375967
先来个例子理解一下概念,以银行取款为例:
同步 : 自己亲自出马持银行卡到银行取钱(使用同步IO时,Java自己处理IO读写)。
异步 : 委托一小弟拿银行卡到银行取钱,然后给你(使用异步IO时,Java将IO读写委托给OS处理,需要将数据缓冲区地址和大小传给OS(银行卡和密码),OS需要支持异步IO操作API)。
阻塞 : ATM排队取款,你只能等待(使用阻塞IO时,Java调用会一直阻塞到读写完成才返回)。
非阻塞 : 柜台取款,取个号,然后坐在椅子上做其它事,等号广播会通知你办理,没到号你就不能去,你可以不断问大堂经理排到了没有,大堂经理如果说还没到你就不能去(使用非阻塞IO时,如果不能读写Java调用会马上返回,当IO事件分发器会通知可读写时再继续进行读写,不断循环直到读写完成)。
Java对BIO、NIO、AIO的支持:
Java BIO (blocking I/O): 同步并阻塞,服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这个连接不做任何事情会造成不必要的线程开销,当然可以通过线程池机制改善。
Java NIO (non-blocking I/O): 同步非阻塞,服务器实现模式为一个请求一个线程,即客户端发送的连接请求都会注册到多路复用器上,多路复用器轮询到连接有I/O请求时才启动一个线程进行处理。
Java AIO(NIO.2) (Asynchronous I/O) : 异步非阻塞,服务器实现模式为一个有效请求一个线程,客户端的I/O请求都是由OS先完成了再通知服务器应用去启动线程进行处理,
BIO、NIO、AIO适用场景分析:
BIO方式适用于连接数目比较小且固定的架构,这种方式对服务器资源要求比较高,并发局限于应用中,JDK1.4以前的唯一选择,但程序直观简单易理解。
NIO方式适用于连接数目多且连接比较短(轻操作)的架构,比如聊天服务器,并发局限于应用中,编程比较复杂,JDK1.4开始支持。
AIO方式使用于连接数目多且连接比较长(重操作)的架构,比如相册服务器,充分调用OS参与并发操作,编程比较复杂,JDK7开始支持。
转载整理自 http://blog.51cto.com/stevex/1284437
四、volatile关键字
原文链接:https://www.cnblogs.com/zhengbin/p/5654805.html
Java语言提供了一种稍弱的同步机制,即volatile变量,用来确保将变量的更新操作通知到其他线程。当把变量声明为volatile类型后,编译器与运行时都会注意到这个变量是共享的,因此不会将该变量上的操作与其他内存操作一起重排序。volatile变量不会被缓存在寄存器或者对其他处理器不可见的地方,因此在读取volatile类型的变量时总会返回最新写入的值。
在访问volatile变量时不会执行加锁操作,因此也就不会使执行线程阻塞,因此volatile变量是一种比sychronized关键字更轻量级的同步机制。
当对非 volatile 变量进行读写的时候,每个线程先从内存拷贝变量到CPU缓存中。如果计算机有多个CPU,每个线程可能在不同的CPU上被处理,这意味着每个线程可以拷贝到不同的 CPU cache 中。
而声明变量是 volatile 的,JVM 保证了每次读变量都从内存中读,跳过 CPU cache 这一步。
当一个变量定义为 volatile 之后,将具备两种特性:
1.保证此变量对所有的线程的可见性,这里的“可见性”,如本文开头所述,当一个线程修改了这个变量的值,volatile 保证了新值能立即同步到主内存,以及每次使用前立即从主内存刷新。但普通变量做不到这点,普通变量的值在线程间传递均需要通过主内存(详见:Java内存模型)来完成。
2.禁止指令重排序优化。有volatile修饰的变量,赋值后多执行了一个“load addl $0x0, (%esp)”操作,这个操作相当于一个内存屏障(指令重排序时不能把后面的指令重排序到内存屏障之前的位置),只有一个CPU访问内存时,并不需要内存屏障;(什么是指令重排序:是指CPU采用了允许将多条指令不按程序规定的顺序分开发送给各相应电路单元处理)。
volatile 性能:
volatile 的读性能消耗与普通变量几乎相同,但是写操作稍慢,因为它需要在本地代码中插入许多内存屏障
五、 jvm 对象逃逸
原文链接:https://www.cnblogs.com/javastack/p/11023044.html
逃逸分析概念:
逃逸分析(Escape Analysis)简单来讲就是,虚拟机可以分析新创建对象的使用范围,并决定是否在 Java 堆上分配内存的一项技术。(对象不一定都是在堆上的)
对象逃逸状态
我们了解了 Java 中的逃逸分析技术,再来了解下一个对象的逃逸状态。
1、全局逃逸(GlobalEscape)
即一个对象的作用范围逃出了当前方法或者当前线程,有以下几种场景:
对象是一个静态变量
对象是一个已经发生逃逸的对象
对象作为当前方法的返回值
2、参数逃逸(ArgEscape)
即一个对象被作为方法参数传递或者被参数引用,但在调用过程中不会发生全局逃逸,这个状态是通过被调方法的字节码确定的。
3、没有逃逸
即方法中的对象没有发生逃逸。
逃逸分析优化
针对上面第三点,当一个对象没有逃逸时,可以得到以下几个虚拟机的优化。
- 锁消除
我们知道线程同步锁是非常牺牲性能的,当编译器确定当前对象只有当前线程使用,那么就会移除该对象的同步锁。
例如,StringBuffer 和 Vector 都是用 synchronized 修饰线程安全的,但大部分情况下,它们都只是在当前线程中用到,这样编译器就会优化移除掉这些锁操作。
锁消除的 JVM 参数如下:
开启锁消除:-XX:+EliminateLocks
关闭锁消除:-XX:-EliminateLocks
锁消除在 JDK8 中都是默认开启的,并且锁消除都要建立在逃逸分析的基础上。
- 标量替换
首先要明白标量和聚合量,基础类型和对象的引用可以理解为标量,它们不能被进一步分解。而能被进一步分解的量就是聚合量,比如:对象。
对象是聚合量,它又可以被进一步分解成标量,将其成员变量分解为分散的变量,这就叫做标量替换。
这样,如果一个对象没有发生逃逸,那压根就不用创建它,只会在栈或者寄存器上创建它用到的成员标量,节省了内存空间,也提升了应用程序性能。
标量替换的 JVM 参数如下:
开启标量替换:-XX:+EliminateAllocations
关闭标量替换:-XX:-EliminateAllocations
显示标量替换详情:-XX:+PrintEliminateAllocations
标量替换同样在 JDK8 中都是默认开启的,并且都要建立在逃逸分析的基础上。
- 栈上分配
当对象没有发生逃逸时,该对象就可以通过标量替换分解成成员标量分配在栈内存中,和方法的生命周期一致,随着栈帧出栈时销毁,减少了 GC 压力,提高了应用程序性能。
总结
逃逸分析讲完了,总结了不少时间,我们也应该大概知道逃逸分析是为了优化 JVM 内存和提升程序性能的。
我们知道这点后,在平时开发过程中就要可尽可能的控制变量的作用范围了,变量范围越小越好,让虚拟机尽可能有优化的空间。
六、java代码运行过程
七、双亲委派模型的破坏与重写✍🏻
如果不想打破双亲委派模型,就重写ClassLoader类中的findClass()方法即可,无法被父类加载器加载的类最终会通过这个方法被加载。
而如果想打破双亲委派模型则需要重写loadClass()方法(当然其中的坑也不会少)。典型的打破双亲委派模型的框架和中间件有tomcat与osgi,如果相对java的类加载过程有更深入的了解学习这两个框架的源码会是不错的选择。
————————————————
版权声明:本文为优快云博主「tinysakurac」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.youkuaiyun.com/m0_37556444/article/details/81912283
八、内存溢出与内存泄露
内存溢出 out of memory,是指程序在申请内存时,没有足够的内存空间供其使用,出现out of memory;比如申请了一个integer,但给它存了long才能存下的数,那就是内存溢出。
内存泄露 memory leak,是指程序在申请内存后,无法释放已申请的内存空间,一次内存泄露危害可以忽略,但内存泄露堆积后果很严重,无论多少内存,迟早会被占光。
memory leak会最终会导致out of memory!
————————————————
版权声明:本文为优快云博主「buutterfly」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.youkuaiyun.com/buutterfly/article/details/6617375
九、spring事务的传播
十、next-Lock
innoDB支持三种行锁定方式:
行锁(Record Lock):锁直接加在索引记录上面(无索引项时演变成表锁)。
间隙锁(Gap Lock):锁定索引记录间隙,确保索引记录的间隙不变。间隙锁是针对事务隔离级别为可重复读或以上级别的。
Next-Key Lock :行锁和间隙锁组合起来就是 Next-Key Lock。
innoDB默认的隔离级别是可重复读(Repeatable Read),并且会以Next-Key Lock的方式对数据行进行加锁。Next-Key Lock是行锁和间隙锁的组合,当InnoDB扫描索引记录的时候,会首先对索引记录加上行锁(Record Lock),再对索引记录两边的间隙加上间隙锁(Gap Lock)。加上间隙锁之后,其他事务就不能在这个间隙修改或者插入记录。
当查询的索引含有唯一属性(唯一索引,主键索引)时,Innodb存储引擎会对next-key lock进行优化,将其降为record lock,即仅锁住索引本身,而不是范围。
2-3、何时使用行锁,何时产生间隙锁
对上一节的最后一句做个扩展说明。
只使用唯一索引查询,并且只锁定一条记录时,innoDB会使用行锁。
只使用唯一索引查询,但是检索条件是范围检索,或者是唯一检索然而检索结果不存在(试图锁住不存在的数据)时,会产生 Next-Key Lock。
使用普通索引检索时,不管是何种查询,只要加锁,都会产生间隙锁。
同时使用唯一索引和普通索引时,由于数据行是优先根据普通索引排序,再根据唯一索引排序,所以也会产生间隙锁。
作者:白花蛇草可乐
链接:https://www.jianshu.com/p/d5c2613cbb81
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
十一、sql语句优化
sql语句优化的几种方法有:
1、统一SQL语句的格式;
2、对查询进行优化,应尽量避免全表扫描;
3、SQL语句要简洁;
(1)用 exists 代替 in
(2)关键词 %yue%,由于yue前面用到了“%”,因此该查询必然走全表扫描,除非必要,否则不要在关键词前加%
(3)对于连续的数值,能用 between 就不要用 in 了:
(4)应尽量避免在 where 子句中使用!=或<>操作符, where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
4、考虑使用“临时表”暂存中间结果;
5、尽量避免大事务操作;
6、尽量避免向客户端返回大数据量。
explain的参数
EXPLAIN输出字段:
id : 执行编号,标志select所属的行。如果在语句中没有子查询或关联查询,只有唯一的select,每行都将显示1.否则内层的select语句一般会顺序编号,对应于骑在元是语句中的位置
select_type : 显示本行是简单或复杂select.如果查询有任何复杂的子查询,则最外层标记为PRIMARY(DERIVERD、UNION、UNION RESUIT)
table : 访问引用哪个表(引用某个查询,如‘derived3’)
type : 数据访问/读取操作类型(ALL、index、range、ref、eq_ref、const/system、NULL)
possible_keys : 解释哪一些索引可能有利用高效的查询
key : 显示mysql决定采用哪个索引来优化查询
key_len : 显示mysql在索引里使用的字节数
ref : 显示了之前的表在key列记录的索引中查找值所用的列或常量
rows : 为了找到所需的行而需要读取的行数,估算值,不精确。通过把所有rows列相乘,可粗略估算整个查询会检查的行数
Extra : 额外信息,如using index、filesort 等
————————————————
版权声明:本文为优快云博主「is_Min」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.youkuaiyun.com/qq_34581118/article/details/76222753