基于【Lama Cleaner】一键秒去水印,轻松移除不想要的内容!

一、项目背景

革命性的AI图像编辑技术,让您的图片焕然一新!无论水印、logo、不想要的人物或物体,都能被神奇地移除,只留下纯净的画面。操作简单,效果出众,给你全新的视觉体验。开启图像编辑新纪元,尽在掌控!

利用去水印开源工具Lama Cleaner对照片中"杂质"进行去除!

可以去AI擦除一切应用体验!

先看效果:

 

二、Lama Cleaner是什么?

Lama Cleaner是一款开源且免费的人工学习图片去水印程序(个人主要学习用途),没有图片分辨率限制(个人使用暂未发现),并且保存的图片质量很高(个人觉得跟原图差不多),还能下载处理后的图片到本地。

三、操作

1、安装

In [1]

!pip install litelama==0.1.7
Looking in indexes: https://mirror.baidu.com/pypi/simple/, https://mirrors.aliyun.com/pypi/simple/
Collecting litelama==0.1.7
  Downloading https://mirrors.aliyun.com/pypi/packages/6e/59/873f5cbaeae1f2b17e6d1ae6c74e1efde28783db4d7442346a77a6140673/litelama-0.1.7-py3-none-any.whl (21 kB)
Collecting kornia>=0.7.0 (from litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/ac/fa/5612c4b1ad83b3044062e9dd0ca3c91937d8023cff0836269e18573655b0/kornia-0.7.2-py2.py3-none-any.whl (825 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 825.4/825.4 kB 1.1 MB/s eta 0:00:0000:0100:01
Requirement already satisfied: numpy>=1.24.4 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from litelama==0.1.7) (1.26.2)
Collecting omegaconf>=2.3.0 (from litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/e3/94/1843518e420fa3ed6919835845df698c7e27e183cb997394e4a670973a65/omegaconf-2.3.0-py3-none-any.whl (79 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 79.5/79.5 kB 1.1 MB/s eta 0:00:00a 0:00:01
Requirement already satisfied: opencv-python>=4.8.0.76 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from litelama==0.1.7) (4.8.1.78)
Requirement already satisfied: pillow>=10.0.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from litelama==0.1.7) (10.1.0)
Requirement already satisfied: requests>=2.31.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from litelama==0.1.7) (2.31.0)
Requirement already satisfied: safetensors>=0.3.3 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from litelama==0.1.7) (0.4.1)
Collecting torch>=2.0.1 (from litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/33/b3/1fcc3bccfddadfd6845dcbfe26eb4b099f1dfea5aa0e5cfb92b3c98dba5b/torch-2.2.2-cp310-cp310-manylinux1_x86_64.whl (755.5 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 755.5/755.5 MB 769.7 kB/s eta 0:00:0000:0100:16
Collecting kornia-rs>=0.1.0 (from kornia>=0.7.0->litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/7b/ef/eec16e87bc8893f608a42c96739ad0c35e30877b0f64bd19d95971534cef/kornia_rs-0.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.4/2.4 MB 1.3 MB/s eta 0:00:0000:0100:01
Requirement already satisfied: packaging in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from kornia>=0.7.0->litelama==0.1.7) (23.2)
Collecting antlr4-python3-runtime==4.9.* (from omegaconf>=2.3.0->litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/3e/38/7859ff46355f76f8d19459005ca000b6e7012f2f1ca597746cbcd1fbfe5e/antlr4-python3-runtime-4.9.3.tar.gz (117 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 117.0/117.0 kB 1.3 MB/s eta 0:00:00a 0:00:01
  Preparing metadata (setup.py) ... done
Requirement already satisfied: PyYAML>=5.1.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from omegaconf>=2.3.0->litelama==0.1.7) (6.0.1)
Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from requests>=2.31.0->litelama==0.1.7) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from requests>=2.31.0->litelama==0.1.7) (3.6)
Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from requests>=2.31.0->litelama==0.1.7) (2.1.0)
Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from requests>=2.31.0->litelama==0.1.7) (2023.11.17)
Requirement already satisfied: filelock in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from torch>=2.0.1->litelama==0.1.7) (3.13.1)
Requirement already satisfied: typing-extensions>=4.8.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from torch>=2.0.1->litelama==0.1.7) (4.9.0)
Collecting sympy (from torch>=2.0.1->litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/d2/05/e6600db80270777c4a64238a98d442f0fd07cc8915be2a1c16da7f2b9e74/sympy-1.12-py3-none-any.whl (5.7 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.7/5.7 MB 1.3 MB/s eta 0:00:0000:0100:01
Collecting networkx (from torch>=2.0.1->litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/d5/f0/8fbc882ca80cf077f1b246c0e3c3465f7f415439bdea6b899f6b19f61f70/networkx-3.2.1-py3-none-any.whl (1.6 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 1.3 MB/s eta 0:00:0000:0100:01
Requirement already satisfied: jinja2 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from torch>=2.0.1->litelama==0.1.7) (3.1.2)
Requirement already satisfied: fsspec in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from torch>=2.0.1->litelama==0.1.7) (2023.10.0)
Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch>=2.0.1->litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/b6/9f/c64c03f49d6fbc56196664d05dba14e3a561038a81a638eeb47f4d4cfd48/nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 23.7/23.7 MB 1.3 MB/s eta 0:00:0000:0100:01
Collecting nvidia-cuda-runtime-cu12==12.1.105 (from torch>=2.0.1->litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/eb/d5/c68b1d2cdfcc59e72e8a5949a37ddb22ae6cade80cd4a57a84d4c8b55472/nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 823.6/823.6 kB 1.2 MB/s eta 0:00:0000:0100:01
Collecting nvidia-cuda-cupti-cu12==12.1.105 (from torch>=2.0.1->litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/7e/00/6b218edd739ecfc60524e585ba8e6b00554dd908de2c9c66c1af3e44e18d/nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 14.1/14.1 MB 1.2 MB/s eta 0:00:0000:0100:01
Collecting nvidia-cudnn-cu12==8.9.2.26 (from torch>=2.0.1->litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/ff/74/a2e2be7fb83aaedec84f391f082cf765dfb635e7caa9b49065f73e4835d8/nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 731.7/731.7 MB 737.2 kB/s eta 0:00:0000:0100:16
Collecting nvidia-cublas-cu12==12.1.3.1 (from torch>=2.0.1->litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/37/6d/121efd7382d5b0284239f4ab1fc1590d86d34ed4a4a2fdb13b30ca8e5740/nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 410.6/410.6 MB 1.0 MB/s eta 0:00:0000:0100:08
Collecting nvidia-cufft-cu12==11.0.2.54 (from torch>=2.0.1->litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/86/94/eb540db023ce1d162e7bea9f8f5aa781d57c65aed513c33ee9a5123ead4d/nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 121.6/121.6 MB 1.3 MB/s eta 0:00:0000:0100:03
Collecting nvidia-curand-cu12==10.3.2.106 (from torch>=2.0.1->litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/44/31/4890b1c9abc496303412947fc7dcea3d14861720642b49e8ceed89636705/nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 56.5/56.5 MB 1.4 MB/s eta 0:00:0000:0100:01
Collecting nvidia-cusolver-cu12==11.4.5.107 (from torch>=2.0.1->litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/bc/1d/8de1e5c67099015c834315e333911273a8c6aaba78923dd1d1e25fc5f217/nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 124.2/124.2 MB 1.4 MB/s eta 0:00:0000:0100:03
Collecting nvidia-cusparse-cu12==12.1.0.106 (from torch>=2.0.1->litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/65/5b/cfaeebf25cd9fdec14338ccb16f6b2c4c7fa9163aefcf057d86b9cc248bb/nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 196.0/196.0 MB 1.2 MB/s eta 0:00:0000:0100:04
Collecting nvidia-nccl-cu12==2.19.3 (from torch>=2.0.1->litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/38/00/d0d4e48aef772ad5aebcf70b73028f88db6e5640b36c38e90445b7a57c45/nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl (166.0 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 166.0/166.0 MB 1.2 MB/s eta 0:00:0000:0100:04
Collecting nvidia-nvtx-cu12==12.1.105 (from torch>=2.0.1->litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/da/d3/8057f0587683ed2fcd4dbfbdfdfa807b9160b809976099d36b8f60d08f03/nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 99.1/99.1 kB 1.0 MB/s eta 0:00:00a 0:00:01
Collecting triton==2.2.0 (from torch>=2.0.1->litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/95/05/ed974ce87fe8c8843855daa2136b3409ee1c126707ab54a8b72815c08b49/triton-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (167.9 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 167.9/167.9 MB 1.2 MB/s eta 0:00:0000:0100:04
Collecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch>=2.0.1->litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/58/d1/d1c80553f9d5d07b6072bc132607d75a0ef3600e28e1890e11c0f55d7346/nvidia_nvjitlink_cu12-12.4.99-py3-none-manylinux2014_x86_64.whl (21.1 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 21.1/21.1 MB 1.4 MB/s eta 0:00:0000:0100:01
Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from jinja2->torch>=2.0.1->litelama==0.1.7) (2.1.3)
Collecting mpmath>=0.19 (from sympy->torch>=2.0.1->litelama==0.1.7)
  Downloading https://mirrors.aliyun.com/pypi/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl (536 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 536.2/536.2 kB 1.3 MB/s eta 0:00:0000:0100:01
Building wheels for collected packages: antlr4-python3-runtime
  Building wheel for antlr4-python3-runtime (setup.py) ... done
  Created wheel for antlr4-python3-runtime: filename=antlr4_python3_runtime-4.9.3-py3-none-any.whl size=144554 sha256=077a76af915c8b5e871c1a81a6cbda25ccce15c65326cd9d79be4d51a5141f99
  Stored in directory: /home/aistudio/.cache/pip/wheels/79/82/b1/b79d6e90f34257cd436860ed4f4a09f9e1ea8cd32da7046ea4
Successfully built antlr4-python3-runtime
Installing collected packages: mpmath, antlr4-python3-runtime, triton, sympy, omegaconf, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, networkx, kornia-rs, nvidia-cusparse-cu12, nvidia-cudnn-cu12, nvidia-cusolver-cu12, torch, kornia, litelama
Successfully installed antlr4-python3-runtime-4.9.3 kornia-0.7.2 kornia-rs-0.1.2 litelama-0.1.7 mpmath-1.3.0 networkx-3.2.1 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.19.3 nvidia-nvjitlink-cu12-12.4.99 nvidia-nvtx-cu12-12.1.105 omegaconf-2.3.0 sympy-1.12 torch-2.2.2 triton-2.2.0

2、clean_object

In [2]

from litelama import LiteLama
from litelama.model import download_file
import os
from fastapi import FastAPI, Body



MODEL_PATH = "work/models/"


def clean_object_init_img_with_mask(init_img_with_mask):
    return clean_object(init_img_with_mask['image'],init_img_with_mask['mask'])


def clean_object(image,mask):
    
    Lama = LiteLama2()
    
    init_image = image
    mask_image = mask

    init_image = init_image.convert("RGB")
    mask_image = mask_image.convert("RGB")



    device = "cuda:0"
   

    result = None
    try:
        Lama.to(device)
        result = Lama.predict(init_image, mask_image)
    except:
        pass
    finally:
        Lama.to("cpu")
    
    return [result]


class LiteLama2(LiteLama):
    
    _instance = None
    
    def __new__(cls, *args, **kw):
        if cls._instance is None:
            cls._instance = object.__new__(cls, *args, **kw)
        return cls._instance
        
    def __init__(self, checkpoint_path=None, config_path=None):
        self._checkpoint_path = checkpoint_path
        self._config_path = config_path
        self._model = None
        
        if self._checkpoint_path is None:
            
            checkpoint_path = os.path.join(MODEL_PATH, "big-lama.safetensors")
            if  os.path.exists(checkpoint_path) and os.path.isfile(checkpoint_path):
                pass
            else:
                download_file("https://huggingface.co/anyisalin/big-lama/resolve/main/big-lama.safetensors", checkpoint_path)
                
            self._checkpoint_path = checkpoint_path
        
        self.load(location="cpu")

3、去除标记物

 

In [3]

from PIL import Image
from work.scripts import lama
# 打开图片文件
image = Image.open("work/scripts/1.jpg")
mask = Image.open("work/scripts/image.png")
_output = clean_object(image,mask)
print(_output)
/opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
  from .autonotebook import tqdm as notebook_tqdm
[<PIL.Image.Image image mode=RGB size=464x712 at 0x7F5007677B20>]

4、查看结果

In [4]

_output[0].show()

<PIL.Image.Image image mode=RGB size=464x712>

四、Gradio应用部署

本文开头所示的Gradio应用已经打包在work/scripts目录下的app.gradio.py文件内,大家可按照aistudio应用部署的方法进行在线部署,也可下载文件到本地进行本地运行。

具体步骤如下:

  1. 编辑器右上角找到部署按钮

  1. 选择Gradio部署

  1. 填写应用信息,执行文件选择 app.gradio.py,部署环境选择 GPU 即可,最后点击部署,接下来耐心等待部署完成。

<think>好的,用户让我介绍一下开源的AI修图工具。首先,我需要明确用户的需求是什么。他们可能对现有的商业软件(比如Photoshop)不太满意,或者想寻找免费、可定制的替代品。开源工具通常意味着免费和透明,用户可能对隐私或数据控制有顾虑,或者想自己调整工具的功能。 接下来,我需要回忆或查找当前比较流行的开源AI修图项目。常见的可能有GIMP插件,或者其他基于机器学习的独立工具。比如,我知道有个叫DeepAI的工具,但不确定是否开源。可能需要进一步确认。另外,最近一些基于GAN(生成对抗网络)的项目,比如StyleGAN,可能被集成到修图工具中。 然后,要确保这些工具确实开源,比如在GitHub上可以找到它们的仓库。例如,可能包括G'MIC(GIMP的插件),它虽然不是AI驱动,但功能强大。而像Lama Cleaner这样的项目可能更专注于AI修复。需要区分哪些是纯AI,哪些是传统算法增强的。 用户可能还关心易用性、系统兼容性(比如Windows、Linux、Mac)、硬件要求(是否需要GPU加速)。比如,一些AI工具可能需要Python环境,或者依赖库,这对普通用户来说可能比较复杂,需要说明。 另外,功能方面,用户可能想知道这些工具能做什么,比如去水印、修复老照片、背景替换、超分辨率等。需要列举每个工具的主要功能,让用户了解是否符合他们的需求。 还要注意是否有活跃的社区支持,文档是否齐全,这对用户解决问题很重要。比如,GIMP有庞大的社区,而一些小项目可能依赖开发者的维护。 可能还需要比较这些工具和商业软件的优缺点,比如开源工具可能缺乏用户友好的界面,但可定制性强。同时,隐私方面,开源工具可能更安全,因为代码可审查。 最后,总结一下推荐的几个工具,按功能或用户友好度排序,并给出简要的安装或使用指南。比如,Lama Cleaner可能适合普通用户,而Cupscale适合需要超分辨率的用户,但需要一定的技术背景。 需要检查每个工具的最新状态,避免推荐已停止维护的项目。可能参考最近的资料或GitHub的更新日期。同时,确保提到的工具确实是开源的,许可证符合用户需求,比如GPL、MIT等。 还要考虑用户的技术水平,是否需要命令行操作,或者有图形界面。例如,某些工具可能需要通过pip安装,而其他有可执行文件。 最后,组织信息结构清晰,分点介绍每个工具,包括功能、特点、适用场景和获取方式,帮助用户快速找到适合自己的选项。</think>以下是几款值得关注的开源的AI修图工具,它们基于深度学习技术,提供图像修复、增强、去噪等功能,适用于不同场景需求: --- ### 一、Lama Cleaner **功能特点**: - 基于深度学习模型(如LaMa、SD等),支持一键移除图片中的水印、物体、人物等 - 提供超分辨率、人脸修复、背景替换等扩展功能 - 支持本地部署(CPU/GPU),保障隐私安全 **适用场景**: - 快速清除图片中不需要的元素 - 修复低分辨率或模糊的老照片 **获取方式**: - GitHub仓库:https://github.com/Sanster/lama-cleaner - 安装命令:`pip install lama-cleaner` --- ### 二、GIMP + AI插件 **功能特点**: - **GIMP**(开源Photoshop替代品)通过插件集成AI功能 - 插件如 **G'MIC** 提供AI降噪、风格迁移、自动上色等 - 支持图层编辑、批处理等专业功能 **适用场景**: - 需要精细调整的图片编辑 - 结合传统修图与AI自动化处理 **获取方式**: - 官网:https://www.gimp.org - G'MIC插件:https://gmic.eu --- ### 三、Cupscale(基于ESRGAN) **功能特点**: - 基于 **ESRGAN** 模型实现图像超分辨率重建 - 可将低分辨率图片放大4-8倍并增强细节 - 支持自定义模型(如动漫、真人专用模型) **适用场景**: - 游戏截图、动漫图像高清化 - 提升老照片画质 **获取方式**: - GitHub仓库:https://github.com/n00mkrad/cupscale --- ### 四、Stable Diffusion WebUI(扩展功能) **功能特点**: - 通过 **inpainting**(局部重绘)功能智能修复图片缺失区域 - 支持文本描述生成/替换图片内容 - 需搭配ControlNet等插件优化控制 **适用场景**: - 创意内容生成(如修改服装、场景) - 复杂背景修复 **获取方式**: - 项目地址:https://github.com/AUTOMATIC1111/stable-diffusion-webui --- ### 五、Real-ESRGAN **功能特点**: - 专注于通用图像/视频超分辨率与去模糊 - 支持批量处理,兼容JPEG压缩伪影修复 **适用场景**: - 提升手机拍摄的低质量图片 - 修复直播录屏中的模糊画面 **获取方式**: - GitHub仓库:https://github.com/xinntao/Real-ESRGAN --- ### 六、OpenRetouch **功能特点**: - 基于GAN模型自动修复皮肤瑕疵、调整光影 - 开源社区驱动,代码透明可修改 **适用场景**: - 人像精修(如祛痘、美白) - 商业摄影后期处理 **获取方式**: - GitHub仓库:https://github.com/opendreamnet/opendream --- ### 选择建议: 1. **新手用户**:优先尝试 **Lama Cleaner** 或 **GIMP**,图形界面友好 2. **开发者/进阶用户**:使用 **Stable Diffusion** 或 **Real-ESRGAN**,自定义模型扩展功能 3. **注重隐私**:选择支持本地运行的工具(如Lama Cleaner、Cupscale) 这些工具均遵循开源协议(MIT、GPL等),可通过GitHub获取源代码并参与社区贡献。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

军哥说AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值