操作系统内存管理详细总结

本文深入探讨内存管理的核心概念和技术,包括内存分配与回收、地址转换、内存空间的扩充及存储保护等内容。文中详细介绍了多种内存管理方式,如连续分配、非连续分配、分页与分段存储管理等,并对比了各种方法的优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 内存管理的概念

内存管理(Memory Management)是操作系统设计中最重要和最复杂的内容之一。虽然计算机硬件一直在飞速发展,内存容量也在不断增长,但是仍然不可能将所有用户进程和系统所需要的全部程序和数据放入主存中,所以操作系统必须将内存空间进行合理地划分和有效地动态分配。操作系统对内存的划分和动态分配,就是内存管理的概念。
有效的内存管理在多道程序设计中非常重要,不仅方便用户使用存储器、提高内存利用率,还可以通过虚拟技术从逻辑上扩充存储器。
内存管理的功能有:

  • 内存空间的分配与回收:由操作系统完成主存储器空间的分配和管理,使程序员摆脱存储分配的麻烦,提高编程效率。
  • 地址转换:在多道程序环境下,程序中的逻辑地址与内存中的物理地址不可能一致,因此存储管理必须提供地址变换功能,把逻辑地址转换成相应的物理地址。
  • 内存空间的扩充:利用虚拟存储技术或自动覆盖技术,从逻辑上扩充内存。
  • 存储保护:保证各道作业在各自的存储空间内运行,.互不干扰。

在进行具体的内存管理之前,需要了解进程运行的基本原理和要求。

程序装入和链接

创建进程首先要将程序和数据装入内存。将用户源程序变为可在内存中执行的程序,通常需要以下几个步骤:

  • 编译:由编译程序将用户源代码编译成若干个目标模块。
  • 链接:由链接程序将编译后形成的一组目标模块,以及所需库函数链接在一起,形成一个完整的装入模块。
  • 装入:由装入程序将装入模块装入内存运行。

这三步过程如图3-1所示。

img

图3-1 对用户程序的处理步骤

程序的链接有以下三种方式:

  • 静态链接:在程序运行之前,先将各目标模块及它们所需的库函数链接成一个完整的可执行程序,以后不再拆开。
  • 装入时动态链接:将用户源程序编译后所得到的一组目标模块,在装入内存时,釆用边装入边链接的链接方式。
  • 运行时动态链接:对某些目标模块的链接,是在程序执行中需要该目标模块时,才对它进行的链接。其优点是便于修改和更新,便于实现对目标模块的共享。

内存的装入模块在装入内存时,同样有以下三种方式:

\1) 绝对装入。在编译时,如果知道程序将驻留在内存的某个位置,编译程序将产生绝对地址的目标代码。绝对装入程序按照装入模块中的地址,将程序和数据装入内存。由于程序中的逻辑地址与实际内存地址完全相同,故不需对程序和数据的地址进行修改。

绝对装入方式只适用于单道程序环境。另外,程序中所使用的绝对地址,可在编译或汇编时给出,也可由程序员直接赋予。而通常情况下在程序中釆用的是符号地址,编译或汇编时再转换为绝对地址。

\2) 可重定位装入。在多道程序环境下,多个目标模块的起始地址通常都是从0开始,程序中的其他地址都是相对于起始地址的,此时应釆用可重定位装入方式。根据内存的当前情况,将装入模块装入到内存的适当位置。装入时对目标程序中指令和数据的修改过程称为重定位,地址变换通常是在装入时一次完成的,所以又称为静态重定位,如图3-2(a) 所示。

img

img

图3-2 重定向类型

静态重定位的特点是在一个作业装入内存时,必须分配其要求的全部内存空间,如果没有足够的内存,就不能装入该作业。此外,作业一旦进入内存后,在整个运行期间不能在内存中移动,也不能再申请内存空间。

\3) 动态运行时装入,也称为动态重定位,程序在内存中如果发生移动,就需要釆用动态的装入方式。装入程序在把装入模块装入内存后,并不立即把装入模块中的相对地址转换为绝对地址,而是把这种地址转换推迟到程序真正要执行时才进行。因此,装入内存后的所有地址均为相对地址。这种方式需要一个重定位寄存器的支持,如图3-2(b)所示。

动态重定位的特点是可以将程序分配到不连续的存储区中;在程序运行之前可以只装入它的部分代码即可投入运行,然后在程序运行期间,根据需要动态申请分配内存;便于程序段的共享,可以向用户提供一个比存储空间大得多的地址空间。

逻辑地址空间与物理地址空间

编译后,每个目标模块都是从0号单元开始编址,称为该目标模块的相对地址(或逻辑地址)。

当链接程序将各个模块链接成一个完整的可执行目标程序时,链接程序顺序依次按各个模块的相对地址构成统一的从0号单元开始编址的逻辑地址空间。用户程序和程序员只需知道逻辑地址,而内存管理的具体机制则是完全透明的,它们只有系统编程人员才会涉及。不同进程可以有相同的逻辑地址,因为这些相同的逻辑地址可以映射到主存的不同位置。

物理地址空间是指内存中物理单元的集合,它是地址转换的最终地址,进程在运行时执行指令和访问数据最后都要通过物理地址从主存中存取。当装入程序将可执行代码装入内存时,必须通过地址转换将逻辑地址转换成物理地址,这个过程称为地址重定位。

内存保护

内存分配前,需要保护操作系统不受用户进程的影响,同时保护用户进程不受其他用户进程的影响。通过釆用重定位寄存器和界地址寄存器来实现这种保护。重定位寄存器含最小的物理地址值,界地址寄存器含逻辑地址值。每个逻辑地址值必须小于界地址寄存器;内存管理机构动态地将逻辑地址与界地址寄存器进行比较,如果未发生地址越界,则加上重定位寄存器的值后映射成物理地址,再送交内存单元,如图3-3所示。

当CPU调度程序选择进程执行时,派遣程序会初始化重定位寄存器和界地址寄存器。每一个逻辑地址都需要与这两个寄存器进行核对,以保证操作系统和其他用户程序及数据不被该进程的运行所影响。

img

图3-3 重定位和界地址寄存器的硬件支持

回到顶部

2. 内存覆盖与内存交换

覆盖与交换技术是在多道程序环境下用来扩充内存的两种方法。

内存覆盖

早期的计算机系统中,主存容量很小,虽然主存中仅存放一道用户程序,但是存储空间放不下用户进程的现象也经常发生,这一矛盾可以用覆盖技术来解决。

覆盖的基本思想是:由于程序运行时并非任何时候都要访问程序及数据的各个部分(尤其是大程序),因此可以把用户空间分成一个固定区和若干个覆盖区。将经常活跃的部分放在固定区,其余部分按调用关系分段。首先将那些即将要访问的段放入覆盖区,其他段放在外存中,在需要调用前,系统再将其调入覆盖区,替换覆盖区中原有的段。

覆盖技术的特点是打破了必须将一个进程的全部信息装入主存后才能运行的限制,但当同时运行程序的代码量大于主存时仍不能运行。

内存交换

交换(对换)的基本思想是,把处于等待状态(或在CPU调度原则下被剥夺运行权利)的程序从内存移到辅存,把内存空间腾出来,这一过程又叫换出;把准备好竞争CPU运行的程序从辅存移到内存,这一过程又称为换入。中级调度就是釆用交换技术。

例如,有一个CPU釆用时间片轮转调度算法的多道程序环境。时间片到,内存管理器将刚刚执行过的进程换出,将另一进程换入到刚刚释放的内存空间中。同时,CPU调度器可以将时间片分配给其他已在内存中的进程。每个进程用完时间片都与另一进程交换。理想情况下,内存管理器的交换过程速度足够快,总有进程在内存中可以执行。

有关交换需要注意以下几个问题:

  • 交换需要备份存储,通常是快速磁盘。它必须足够大,并且提供对这些内存映像的直接访问。
  • 为了有效使用CPU,需要每个进程的执行时间比交换时间长,而影响交换时间的主要是转移时间。转移时间与所交换的内存空间成正比。
  • 如果换出进程,必须确保该进程是完全处于空闲状态。
  • 交换空间通常作为磁盘的一整块,且独立于文件系统,因此使用就可能很快。
  • 交换通常在有许多进程运行且内存空间吃紧时开始启动,而系统负荷降低就暂停。
  • 普通的交换使用不多,但交换策略的某些变种在许多系统中(如UNIX系统)仍发挥作用。

交换技术主要是在不同进程(或作业)之间进行,而覆盖则用于同一个程序或进程中。由于覆盖技术要求给出程序段之间的覆盖结构,使得其对用户和程序员不透明,所以对于主存无法存放用户程序的矛盾,现代操作系统是通过虚拟内存技术来解决的,覆盖技术则已成为历史;而交换技术在现代操作系统中仍具有较强的生命力。

回到顶部

3. 内存连续分配管理方式

连续分配方式,是指为一个用户程序分配一个连续的内存空间。它主要包括单一连续分配、固定分区分配和动态分区分配。

单一连续分配

内存在此方式下分为系统区和用户区,系统区仅提供给操作系统使用,通常在低地址部分;用户区是为用户提供的、除系统区之外的内存空间。这种方式无需进行内存保护。

这种方式的优点是简单、无外部碎片,可以釆用覆盖技术,不需要额外的技术支持。缺点是只能用于单用户、单任务的操作系统中,有内部碎片,存储器的利用率极低。

固定分区分配

固定分区分配是最简单的一种多道程序存储管理方式,它将用户内存空间划分为若干个固定大小的区域,每个分区只装入一道作业。当有空闲分区时,便可以再从外存的后备作业队列中,选择适当大小的作业装入该分区,如此循环。

img

图3-4 固定分区分配的两种方法

固定分区分配在划分分区时,有两种不同的方法,如图3-4所示。

  • 分区大小相等:用于利用一台计算机去控制多个相同对象的场合,缺乏灵活性。
  • 分区大小不等:划分为含有多个较小的分区、适量的中等分区及少量的大分区。

为便于内存分配,通常将分区按大小排队,并为之建立一张分区说明表,其中各表项包括每个分区的起始地址、大小及状态(是否已分配),如图3-5(a)所示。当有用户程序要装入时,便检索该表,以找到合适的分区给予分配并将其状态置为”已分配”;未找到合适分区则拒绝为该用户程序分配内存。存储空间的分配情况如图3-5(b)所示。

这种分区方式存在两个问题:一是程序可能太大而放不进任何一个分区中,这时用户不得不使用覆盖技术来使用内存空间;二是主存利用率低,当程序小于固定分区大小时,也占用了一个完整的内存分区空间,这样分区内部有空间浪费,这种现象称为内部碎片。

固定分区是可用于多道程序设计最简单的存储分配,无外部碎片,但不能实现多进程共享一个主存区,所以存储空间利用率低。固定分区分配很少用于现在通用的操作系统中,但在某些用于控制多个相同对象的控制系统中仍发挥着一定的作用。

img

图3-5 固定分区说明表和内存分配情况

动态分区分配

动态分区分配又称为可变分区分配,是一种动态划分内存的分区方法。这种分区方法不预先将内存划分,而是在进程装入内存时,根据进程的大小动态地建立分区,并使分区的大小正好适合进程的需要。因此系统中分区的大小和数目是可变的。

img

图3-6动态分区

如图3-6所示,系统有64MB内存空间,其中低8MB固定分配给操作系统,其余为用户可用内存。开始时装入前三个进程,在它们分别分配到所需空间后,内存只剩下4MB,进程4无法装入。在某个时刻,内存中没有一个就绪进程,CPU出现空闲,操作系统就换出进程2,换入进程4。由于进程4比进程2小,这样在主存中就产生了一个6MB的内存块。之后CPU又出现空闲,而主存无法容纳进程2,操作系统就换出进程1,换入进程2。

动态分区在开始分配时是很好的,但是之后会导致内存中出现许多小的内存块。随着时间的推移,内存中会产生越来越多的碎片(图3-6中最后的4MB和中间的6MB,且随着进程的换入/换出,很可能会出现更多更小的内存块),内存的利用率随之下降。

这些小的内存块称为外部碎片,指在所有分区外的存储空间会变成越来越多的碎片,这与固定分区中的内部碎片正好相对。克服外部碎片可以通过紧凑(Compaction)技术来解决,就是操作系统不时地对进程进行移动和整理。但是这需要动态重定位寄存器的支持,且相对费时。紧凑的过程实际上类似于Windows系统中的磁盘整理程序,只不过后者是对外存空间的紧凑。

在进程装入或换入主存时,如果内存中有多个足够大的空闲块,操作系统必须确定分配哪个内存块给进程使用,这就是动态分区的分配策略,考虑以下几种算法:

  • 首次适应(First Fit)算法:空闲分区以地址递增的次序链接。分配内存时顺序查找,找到大小能满足要求的第一个空闲分区。
  • 最佳适应(Best Fit)算法:空闲分区按容量递增形成分区链,找到第一个能满足要求的空闲分区。
  • 最坏适应(Worst Fit)算法:又称最大适应(Largest Fit)算法,空闲分区以容量递减的次序链接。找到第一个能满足要求的空闲分区,也就是挑选出最大的分区。
  • 邻近适应(Next Fit)算法:又称循环首次适应算法,由首次适应算法演变而成。不同之处是分配内存时从上次查找结束的位置开始继续查找。

在这几种方法中,首次适应算法不仅是最简单的,而且通常也是最好和最快的。在UNIX 系统的最初版本中,就是使用首次适应算法为进程分配内存空间,其中使用数组的数据结构 (而非链表)来实现。不过,首次适应算法会使得内存的低地址部分出现很多小的空闲分区,而每次分配查找时,都要经过这些分区,因此也增加了查找的开销。

邻近适应算法试图解决这个问题,但实际上,它常常会导致在内存的末尾分配空间(因为在一遍扫描中,内存前面部分使用后再释放时,不会参与分配),分裂成小碎片。它通常比首次适应算法的结果要差。

最佳适应算法虽然称为“最佳”,但是性能通常很差,因为每次最佳的分配会留下很小的难以利用的内存块,它会产生最多的外部碎片。

最坏适应算法与最佳适应算法相反,选择最大的可用块,这看起来最不容易产生碎片,但是却把最大的连续内存划分开,会很快导致没有可用的大的内存块,因此性能也非常差。

Kunth和Shore分别就前三种方法对内存空间的利用情况做了模拟实验,结果表明:

首次适应算法可能比最佳适应法效果好,而它们两者一定比最大适应法效果好。另外注意,在算法实现时,分配操作中最佳适应法和最大适应法需要对可用块进行排序或遍历查找,而首次适应法和邻近适应法只需要简单查找;回收操作中,当回收的块与原来的空闲块相邻时(有三种相邻的情况,比较复杂),需要将这些块合并。在算法实现时,使用数组或链表进行管理。除了内存的利用率,这里的算法开销也是操作系统设计需要考虑的一个因素。

作业道数内部 碎片外部 碎片硬件支持可用空 间管理解决碎 片方法解决空 间不足提高作 业道数
单道连续 分配1界地址寄存器、越界 检查机构覆盖交换
多道固定 连续分配<=N (用户空间划 为N块)上下界寄存器、越界检查机构基地址寄存器、长度寄存器、动态地址转换机构
多道可变连续分配数组链表紧凑

以上三种内存分区管理方法有一共同特点,即用户进程(或作业)在主存中都是连续存放的。这里对它们进行比较和总结,见表3-1。

回到顶部

4. 内存非连续分配管理方式

非连续分配允许一个程序分散地装入到不相邻的内存分区中,根据分区的大小是否固定分为分页存储管理方式和分段存储管理方式。

分页存储管理方式中,又根据运行作业时是否要把作业的所有页面都装入内存才能运行分为基本分页存储管理方式和请求分页存储管理方式。下面介绍基本分页存储管理方式。

基本分页存储管理方式

固定分区会产生内部碎片,动态分区会产生外部碎片,这两种技术对内存的利用率都比较低。我们希望内存的使用能尽量避免碎片的产生,这就引入了分页的思想:把主存空间划分为大小相等且固定的块,块相对较小,作为主存的基本单位。每个进程也以块为单位进行划分,进程在执行时,以块为单位逐个申请主存中的块空间。

分页的方法从形式上看,像分区相等的固定分区技术,分页管理不会产生外部碎片。但它又有本质的不同点:块的大小相对分区要小很多,而且进程也按照块进行划分,进程运行时按块申请主存可用空间并执行。这样,进程只会在为最后一个不完整的块申请一个主存块空间时,才产生主存碎片,所以尽管会产生内部碎片,但是这种碎片相对于进程来说也是很小的,每个进程平均只产生半个块大小的内部碎片(也称页内碎片)。

1) 分页存储的几个基本概念

①页面和页面大小。进程中的块称为页(Page),内存中的块称为页框(Page Frame,或页帧)。外存也以同样的单位进行划分,直接称为块(Block)。进程在执行时需要申请主存空间,就是要为每个页面分配主存中的可用页框,这就产生了页和页框的一一对应。

为方便地址转换,页面大小应是2的整数幂。同时页面大小应该适中,如果页面太小,会使进程的页面数过多,这样页表就过长,占用大量内存,而且也会增加硬件地址转换的开销,降低页面换入/换出的效率;页面过大又会使页内碎片增大,降低内存的利用率。所以页面的大小应该适中,考虑到耷间效率和时间效率的权衡。

②地址结构。分页存储管理的逻辑地址结构如图3-7所示。

img

图3-7 分页存储管理的地址结构

地址结构包含两部分:前一部分为页号P,后一部分为页内偏移量W。地址长度为32 位,其中011位为页内地址,即每页大小为4KB;1231位为页号,地址空间最多允许有2^20页。

③页表。为了便于在内存中找到进程的每个页面所对应的物理块,系统为每个进程建立一张页表,记录页面在内存中对应的物理块号,页表一般存放在内存中。

在配置了页表后,进程执行时,通过查找该表,即可找到每页在内存中的物理块号。可见,页表的作用是实现从页号到物理块号的地址映射,如图3-8所示。

img

图3-8 页表的作用

2) 基本地址变换机构

地址变换机构的任务是将逻辑地址转换为内存中物理地址,地址变换是借助于页表实现的。图3-9给出了分页存储管理系统中的地址变换机构。

img

图3-9 分页存储管理的地址变换机构

在系统中通常设置一个页表寄存器(PTR),存放页表在内存的始址F和页表长度M。进程未执行时,页表的始址和长度存放在进程控制块中,当进程执行时,才将页表始址和长度存入页表寄存器。设页面大小为L,逻辑地址A到物理地址E的变换过程如下:

  1. 计算页号P(P=A/L)和页内偏移量W (W=A%L)。
  2. 比较页号P和页表长度M,若P >= M,则产生越界中断,否则继续执行。
  3. 页表中页号P对应的页表项地址 = 页表起始地址F + 页号P * 页表项长度,取出该页表项内容b,即为物理块号。
  4. 计算E=b*L+W,用得到的物理地址E去访问内存。

以上整个地址变换过程均是由硬件自动完成的。

例如,若页面大小L为1K字节,页号2对应的物理块为b=8,计算逻辑地址A=2500 的物理地址E的过程如下:P=2500/1K=2,W=2500%1K=452,查找得到页号2对应的物理块的块号为 8,E=8*1024+452=8644。

下面讨论分页管理方式存在的两个主要问题:

  • 每次访存操作都需要进行逻辑地址到物理地址的转换,地址转换过程必须足够快,否则访存速度会降低;
  • 每个进程引入了页表,用于存储映射机制,页表不能太大,否则内存利用率会降低。
3) 具有快表的地址变换机构

由上面介绍的地址变换过程可知,若页表全部放在内存中,则存取一个数据或一条指令至少要访问两次内存:一次是访问页表,确定所存取的数据或指令的物理地址,第二次才根据该地址存取数据或指令。显然,这种方法比通常执行指令的速度慢了一半。

为此,在地址变换机构中增设了一个具有并行查找能力的高速缓冲存储器——快表,又称联想寄存器(TLB),用来存放当前访问的若干页表项,以加速地址变换的过程。与此对应,主存中的页表也常称为慢表,配有快表的地址变换机构如图3-10所示。

img

图3-10 具有快表的地址变换机构

在具有快表的分页机制中,地址的变换过程:

  • CPU给出逻辑地址后,由硬件进行地址转换并将页号送入高速缓存寄存器,并将此页号与快表中的所有页号进行比较。
  • 如果找到匹配的页号,说明所要访问的页表项在快表中,则直接从中取出该页对应的页框号,与页内偏移量拼接形成物理地址。这样,存取数据仅一次访存便可实现。
  • 如果没有找到,则需要访问主存中的页表,在读出页表项后,应同时将其存入快表,以便后面可能的再次访问。但若快表已满,则必须按照一定的算法对旧的页表项进行替换。

注意:有些处理机设计为快表和慢表同时查找,如果在快表中查找成功则终止慢表的查找。

一般快表的命中率可以达到90%以上,这样,分页带来的速度损失就降低到10%以下。快表的有效性是基于著名的局部性原理,这在后面的虚拟内存中将会具体讨论。

4) 两级页表

第二个问题:由于引入了分页管理,进程在执行时不需要将所有页调入内存页框中,而只要将保存有映射关系的页表调入内存中即可。但是我们仍然需要考虑页表的大小。

以32 位逻辑地址空间、页面大小4KB、页表项大小4B为例,若要实现进程对全部逻辑地址空间的映射,则每个进程需要2^20,约100万个页表项。也就是说,每个进程仅页表这一项就需要4MB主存空间,这显然是不切实际的。而即便不考虑对全部逻辑地址空间进行映射的情况,一个逻辑地址空间稍大的进程,其页表大小也可能是过大的。

以一个40MB的进程为例,页表项共40KB,如果将所有页表项内容保存在内存中,那么需要10个内存页框来保存整个页表。整个进程大小约为1万个页面,而实际执行时只需要几十个页面进入内存页框就可以运行,但如果要求10个页面大小的页表必须全部进入内存,这相对实际执行时的几十个进程页面的大小来说,肯定是降低了内存利用率的;从另一方面来说,这10页的页表项也并不需要同时保存在内存中,因为大多数情况下,映射所需要的页表项都在页表的同一个页面中。

将页表映射的思想进一步延伸,就可以得到二级分页:将页表的10页空间也进行地址映射,建立上一级页表,用于存储页表的映射关系。这里对页表的10个页面进行映射只需要10个页表项,所以上一级页表只需要1页就足够(可以存储2^10=1024个页表项)。在进程执行时,只需要将这1页的上一级页表调入内存即可,进程的页表和进程本身的页面,可以在后面的执行中再i周入内存。

如图3-11所示,这是Intel处理器80x86系列的硬件分页的地址转换过程。在32位系统中,全部32位逻辑地址空间可以分为220(4GB/4KB)个页面。这些页面可以再进一步建立顶级页表,需要210个顶级页表项进行索引,这正好是一页的大小,所以建立二级页表即可。

img

图3-11 硬件分页地址转换

举例,32位系统中进程分页的工作过程:假定内核已经给一个正在运行的进程分配的逻辑地址空间是0x20000000到0x2003FFFF,这个空间由64个页面组成。在进程运行时,我们不需要知道全部这些页的页框的物理地址,很可能其中很多页还不在主存中。这里我们只注意在进程运行到某一页时,硬件是如何计算得到这一页的页框的物理地址即可。现在进程需要读逻辑地址0x20021406中的字节内容,这个逻辑地址按如下进行处理:
逻辑地址: 0x20021406 (0010 0000 0000 0010 0001 0100 0000 0110 B)
顶级页表字段:0x80 (00 1000 0000 B)
二级页表字段:0x21 (00 0010 0001B)
页内偏移量字段:0x406 (0100 0000 0110 B)

顶级页表字段的0x80用于选择顶级页表的第0x80表项,此表项指向和该进程的页相关的二级页表;二级页表字段0x21用于选择二级页表的第0x21表项,此表项指向包含所需页的页框;最后的页内偏移量字段0x406用于在目标页框中读取偏移量为0x406中的字节。

这是32位系统下比较实际的一个例子。看似较为复杂的例子,有助于比较深入地理解,希望读者能自己动手计算一遍转换过程。

建立多级页表的目的在于建立索引,这样不用浪费主存空间去存储无用的页表项,也不用盲目地顺序式查找页表项,而建立索引的要求是最高一级页表项不超过一页的大小。在 64位操作系统中,页表的划分则需要重新考虑,这是很多教材和辅导书中的常见题目,但是很多都给出了错误的分析,需要注意。

我们假设仍然釆用4KB页面大小。偏移量字段12位,假设页表项大小为8B。这样,其上一级分页时,每个页框只能存储29(4KB/8B)个页表项,而不再是210个,所以上一级页表字段为9位。后面同理继续分页。64=12+9+9+9+9+9+7,所以需6级分页才能实现索引。很多书中仍然按4B页表项分析,虽然同样得出6级分页的结果,但显然是错误的。这里给出两个实际的64位操作系统的分页级别(注意:里面没有使用全部64位寻址,不过由于地址字节对齐的设计考虑,仍然使用8B大小的页表项),理解了表3-2中的分级方式,相信对多级分页就非常清楚了。

平台页面大小寻址位数分页级数具体分级
Alpha8KB43313+10+10+10
X86_644 KB48412+9+9+9+9

基本分段存储管理方式

分页管理方式是从计算机的角度考虑设计的,以提高内存的利用率,提升计算机的性能, 且分页通过硬件机制实现,对用户完全透明;而分段管理方式的提出则是考虑了用户和程序员,以满足方便编程、信息保护和共享、动态增长及动态链接等多方面的需要。

1) 分段。

段式管理方式按照用户进程中的自然段划分逻辑空间。例如,用户进程由主程序、两个子程序、栈和一段数据组成,于是可以把这个用户进程划分为5个段,每段从0 开始编址,并分配一段连续的地址空间(段内要求连续,段间不要求连续,因此整个作业的地址空间是二维的)。其逻辑地址由段号S与段内偏移量W两部分组成。

在图3-12中,段号为16位,段内偏移量为16位,则一个作业最多可有2^16=65536个段,最大段长为64KB。

img

img

图3-12 分段系统中的逻辑地址结构

在页式系统中,逻辑地址的页号和页内偏移量对用户是透明的,但在段式系统中,段号和段内偏移量必须由用户显示提供,在髙级程序设计语言中,这个工作由编译程序完成。

2) 段表。

每个进程都有一张逻辑空间与内存空间映射的段表,其中每一个段表项对应进程的一个段,段表项记录该段在内存中的起始地址和段的长度。段表的内容如图3-13所示。
img

img

图3-13 段表项

在配置了段表后,执行中的进程可通过查找段表,找到每个段所对应的内存区。可见,段表用于实现从逻辑段到物理内存区的映射,如图3-14所示。
img

img

图3-14 利用段表实现地址映射

3) 地址变换机构。

分段系统的地址变换过程如图3-15所示。为了实现进程从逻辑地址到物理地址的变换功能,在系统中设置了段表寄存器,用于存放段表始址F和段表长度M。其从逻辑地址A到物理地址E之间的地址变换过程如下:

  • 从逻辑地址A中取出前几位为段号S,后几位为段内偏移量W。
  • 比较段号S和段表长度M,若S多M,则产生越界中断,否则继续执行。
  • 段表中段号S对应的段表项地址 = 段表起始地址F + 段号S * 段表项长度,取出该段表项的前几位得到段长C。若段内偏移量>=C,则产生越界中断,否则继续执行。
  • 取出段表项中该段的起始地址b,计算 E = b + W,用得到的物理地址E去访问内存。

img

img

图3-15 分段系统的地址变换过程

4) 段的共享与保护。

在分段系统中,段的共享是通过两个作业的段表中相应表项指向被共享的段的同一个物理副本来实现的。当一个作业正从共享段中读取数据时,必须防止另一个作业修改此共享段中的数据。不能修改的代码称为纯代码或可重入代码(它不属于临界资源),这样的代码和不能修改的数据是可以共享的,而可修改的代码和数据则不能共享。

与分页管理类似,分段管理的保护方法主要有两种:一种是存取控制保护,另一种是地址越界保护。地址越界保护是利用段表寄存器中的段表长度与逻辑地址中的段号比较,若段号大于段表长度则产生越界中断;再利用段表项中的段长和逻辑地址中的段内位移进行比较,若段内位移大于段长,也会产生越界中断。

段页式管理方式

页式存储管理能有效地提高内存利用率,而分段存储管理能反映程序的逻辑结构并有利于段的共享。如果将这两种存储管理方法结合起来,就形成了段页式存储管理方式。

在段页式系统中,作业的地址空间首先被分成若干个逻辑段,每段都有自己的段号,然后再将每一段分成若干个大小固定的页。对内存空间的管理仍然和分页存储管理一样,将其分成若干个和页面大小相同的存储块,对内存的分配以存储块为单位,如图3-16所示。
img

img

图3-16 段页式管理方式

在段页式系统中,作业的逻辑地址分为三部分:段号、页号和页内偏移量,如图3-17 所示。

img

img

图3-17 段页式系统的逻辑地址结构

为了实现地址变换,系统为每个进程建立一张段表,而每个分段有一张页表。段表表项中至少包括段号、页表长度和页表起始地址,页表表项中至少包括页号和块号。此外,系统中还应有一个段表寄存器,指出作业的段表起始地址和段表长度。

注意:在一个进程中,段表只有一个,而页表可能有多个。

在进行地址变换时,首先通过段表查到页表起始地址,然后通过页表找到页帧号,最后形成物理地址。如图3-18所示,进行一次访问实际需要三次访问主存,这里同样可以使用快表以加快查找速度,其关键字由段号、页号组成,值是对应的页帧号和保护码。

img

1667921227561)]

img

图3-17 段页式系统的逻辑地址结构

为了实现地址变换,系统为每个进程建立一张段表,而每个分段有一张页表。段表表项中至少包括段号、页表长度和页表起始地址,页表表项中至少包括页号和块号。此外,系统中还应有一个段表寄存器,指出作业的段表起始地址和段表长度。

注意:在一个进程中,段表只有一个,而页表可能有多个。

在进行地址变换时,首先通过段表查到页表起始地址,然后通过页表找到页帧号,最后形成物理地址。如图3-18所示,进行一次访问实际需要三次访问主存,这里同样可以使用快表以加快查找速度,其关键字由段号、页号组成,值是对应的页帧号和保护码。

[外链图片转存中…(img-LGtm16Cj-1667921227561)]

图3-18 段页式系统的地址变换机构


原文链接: 【操作系统】总结三(内存管理)

文将对 Linux™ 程序员可以使用的内存管理技术进行概述,虽然关注的重点是 C 语言,但同样也适用于其他语言。文中将为您提供如何管理内存的细节,然后将进一步展示如何手工管理内存,如何使用引用计数或者内存池来半手工地管理内存,以及如何使用垃圾收集自动管理内存。 为什么必须管理内存 内存管理是计算机编程最为基本的领域之一。在很多脚本语言中,您不必担心内存是如何管理的,这并不能使得内存管理的重要性有一点点降低。对实际编程来说,理解您的内存管理器的能力与局限性至关重要。在大部分系统语言中,比如 C 和 C++,您必须进行内存管理。本文将介绍手工的、半手工的以及自动的内存管理实践的基本概念。 追溯到在 Apple II 上进行汇编语言编程的时代,那时内存管理还不是个大问题。您实际上在运行整个系统。系统有多少内存,您就有多少内存。您甚至不必费心思去弄明白它有多少内存,因为每一台机器的内存数量都相同。所以,如果内存需要非常固定,那么您只需要选择一个内存范围并使用它即可。 不过,即使是在这样一个简单的计算机中,您也会有问题,尤其是当您不知道程序的每个部分将需要多少内存时。如果您的空间有限,而内存需求是变化的,那么您需要一些方法来满足这些需求: 确定您是否有足够的内存来处理数据。 从可用的内存中获取一部分内存。 向可用内存池(pool)中返回部分内存,以使其可以由程序的其他部分或者其他程序使用。 实现这些需求的程序库称为 分配程序(allocators),因为它们负责分配和回收内存。程序的动态性越强,内存管理就越重要,您的内存分配程序的选择也就更重要。让我们来了解可用于内存管理的不同方法,它们的好处与不足,以及它们最适用的情形。 回页首 C 风格的内存分配程序 C 编程语言提供了两个函数来满足我们的三个需求: malloc:该函数分配给定的字节数,并返回一个指向它们的指针。如果没有足够的可用内存,那么它返回一个空指针。 free:该函数获得指向由 malloc 分配的内存片段的指针,并将其释放,以便以后的程序或操作系统使用(实际上,一些 malloc 实现只能将内存归还给程序,而无法将内存归还给操作系统)。 物理内存和虚拟内存 要理解内存在程序中是如何分配的,首先需要理解如何将内存从操作系统分配给程序。计算机上的每一个进程都认为自己可以访问所有的物理内存。显然,由于同时在运行多个程序,所以每个进程不可能拥有全部内存。实际上,这些进程使用的是 虚拟内存。 只是作为一个例子,让我们假定您的程序正在访问地址为 629 的内存。不过,虚拟内存系统不需要将其存储在位置为 629 的 RAM 中。实际上,它甚至可以不在 RAM 中 —— 如果物理 RAM 已经满了,它甚至可能已经被转移到硬盘上!由于这类地址不必反映内存所在的物理位置,所以它们被称为虚拟内存。操作系统维持着一个虚拟地址到物理地址的转换的表,以便计算机硬件可以正确地响应地址请求。并且,如果地址在硬盘上而不是在 RAM 中,那么操作系统将暂时停止您的进程,将其他内存转存到硬盘中,从硬盘上加载被请求的内存,然后再重新启动您的进程。这样,每个进程都获得了自己可以使用的地址空间,可以访问比您物理上安装的内存更多的内存。 在 32-位 x86 系统上,每一个进程可以访问 4 GB 内存。现在,大部分人的系统上并没有 4 GB 内存,即使您将 swap 也算上, 每个进程所使用的内存也肯定少于 4 GB。因此,当加载一个进程时,它会得到一个取决于某个称为 系统中断点(system break)的特定地址的初始内存分配。该地址之后是未被映射的内存 —— 用于在 RAM 或者硬盘中没有分配相应物理位置的内存。因此,如果一个进程运行超出了它初始分配的内存,那么它必须请求操作系统“映射进来(map in)”更多的内存。(映射是一个表示一一对应关系的数学术语 —— 当内存的虚拟地址有一个对应的物理地址来存储内存内容时,该内存将被映射。) 基于 UNIX 的系统有两个可映射到附加内存中的基本系统调用: brk: brk() 是一个非常简单的系统调用。还记得系统中断点吗?该位置是进程映射的内存边界。 brk() 只是简单地将这个位置向前或者向后移动,就可以向进程添加内存或者从进程取走内存。 mmap: mmap(),或者说是“内存映像”,类似于 brk(),但是更为灵活。首先,它可以映射任何位置的内存,而不单单只局限于进程。其次,它不仅可以将虚拟地址映射到物理的 RAM 或者 swap,它还可以将它们映射到文件和文件位置,这样,读写内存将对文件中的数据进行读写。不过,在这里,我们只关心 mmap 向进程添加被映射的内存的能力。 munmap() 所做的事情与 mmap() 相反。 如您所见, brk() 或者 mmap() 都可以用来向我们的进程添加额外的虚拟内存。在我们的例子中将使用 brk(),因为它更简单,更通用。 实现一个简单的分配程序 如果您曾经编写过很多 C 程序,那么您可能曾多次使用过 malloc() 和 free()。不过,您可能没有用一些时间去思考它们在您的操作系统中是如何实现的。本节将向您展示 malloc 和 free 的一个最简化实现的代码,来帮助说明管理内存时都涉及到了哪些事情。 要试着运行这些示例,需要先 复制本代码清单,并将其粘贴到一个名为 malloc.c 的文件中。接下来,我将一次一个部分地对该清单进行解释。 在大部分操作系统中,内存分配由以下两个简单的函数来处理: void *malloc(long numbytes):该函数负责分配 numbytes 大小的内存,并返回指向第一个字节的指针。 void free(void *firstbyte):如果给定一个由先前的 malloc 返回的指针,那么该函数会将分配的空间归还给进程的“空闲空间”。 malloc_init 将是初始化内存分配程序的函数。它要完成以下三件事:将分配程序标识为已经初始化,找到系统中最后一个有效内存地址,然后建立起指向我们管理的内存的指针。这三个变量都是全局变量: 清单 1. 我们的简单分配程序的全局变量 int has_initialized = 0; void *managed_memory_start; void *last_valid_address; 如前所述,被映射的内存的边界(最后一个有效地址)常被称为系统中断点或者 当前中断点。在很多 UNIX® 系统中,为了指出当前系统中断点,必须使用 sbrk(0) 函数。 sbrk 根据参数中给出的字节数移动当前系统中断点,然后返回新的系统中断点。使用参数 0 只是返回当前中断点。这里是我们的 malloc 初始化代码,它将找到当前中断点并初始化我们的变量: 清单 2. 分配程序初始化函数 /* Include the sbrk function */ #include void malloc_init() { /* grab the last valid address from the OS */ last_valid_address = sbrk(0); /* we don't have any memory to manage yet, so *just set the beginning to be last_valid_address */ managed_memory_start = last_valid_address; /* Okay, we're initialized and ready to go */ has_initialized = 1; } 现在,为了完全地管理内存,我们需要能够追踪要分配和回收哪些内存。在对内存块进行了 free 调用之后,我们需要做的是诸如将它们标记为未被使用的等事情,并且,在调用 malloc 时,我们要能够定位未被使用的内存块。因此, malloc 返回的每块内存的起始处首先要有这个结构: 清单 3. 内存控制块结构定义 struct mem_control_block { int is_available; int size; }; 现在,您可能会认为当程序调用 malloc 时这会引发问题 —— 它们如何知道这个结构?答案是它们不必知道;在返回指针之前,我们会将其移动到这个结构之后,把它隐藏起来。这使得返回的指针指向没有用于任何其他用途的内存。那样,从调用程序的角度来看,它们所得到的全部是空闲的、开放的内存。然后,当通过 free() 将该指针传递回来时,我们只需要倒退几个内存字节就可以再次找到这个结构。 在讨论分配内存之前,我们将先讨论释放,因为它更简单。为了释放内存,我们必须要做的惟一一件事情就是,获得我们给出的指针,回退 sizeof(struct mem_control_block) 个字节,并将其标记为可用的。这里是对应的代码: 清单 4. 解除分配函数 void free(void *firstbyte) { struct mem_control_block *mcb; /* Backup from the given pointer to find the * mem_control_block */ mcb = firstbyte - sizeof(struct mem_control_block); /* Mark the block as being available */ mcb->is_available = 1; /* That's It! We're done. */ return; } 如您所见,在这个分配程序中,内存的释放使用了一个非常简单的机制,在固定时间内完成内存释放。分配内存稍微困难一些。以下是该算法的略述: 清单 5. 主分配程序的伪代码 1. If our allocator has not been initialized, initialize it. 2. Add sizeof(struct mem_control_block) to the size requested. 3. start at managed_memory_start. 4. Are we at last_valid address? 5. If we are: A. We didn't find any existing space that was large enough -- ask the operating system for more and return that. 6. Otherwise: A. Is the current space available (check is_available from the mem_control_block)? B. If it is: i) Is it large enough (check "size" from the mem_control_block)? ii) If so: a. Mark it as unavailable b. Move past mem_control_block and return the pointer iii) Otherwise: a. Move forward "size" bytes b. Go back go step 4 C. Otherwise: i) Move forward "size" bytes ii) Go back to step 4 我们主要使用连接的指针遍历内存来寻找开放的内存块。这里是代码: 清单 6. 主分配程序 void *malloc(long numbytes) { /* Holds where we are looking in memory */ void *current_location; /* This is the same as current_location, but cast to a * memory_control_block */ struct mem_control_block *current_location_mcb; /* This is the memory location we will return. It will * be set to 0 until we find something suitable */ void *memory_location; /* Initialize if we haven't already done so */ if(! has_initialized) { malloc_init(); } /* The memory we search for has to include the memory * control block, but the users of malloc don't need * to know this, so we'll just add it in for them. */ numbytes = numbytes + sizeof(struct mem_control_block); /* Set memory_location to 0 until we find a suitable * location */ memory_location = 0; /* Begin searching at the start of managed memory */ current_location = managed_memory_start; /* Keep going until we have searched all allocated space */ while(current_location != last_valid_address) { /* current_location and current_location_mcb point * to the same address. However, current_location_mcb * is of the correct type, so we can use it as a struct. * current_location is a void pointer so we can use it * to calculate addresses. */ current_location_mcb = (struct mem_control_block *)current_location; if(current_location_mcb->is_available) { if(current_location_mcb->size >= numbytes) { /* Woohoo! We've found an open, * appropriately-size location. */ /* It is no longer available */ current_location_mcb->is_available = 0; /* We own it */ memory_location = current_location; /* Leave the loop */ break; } } /* If we made it here, it's because the Current memory * block not suitable; move to the next one */ current_location = current_location + current_location_mcb->size; } /* If we still don't have a valid location, we'll * have to ask the operating system for more memory */ if(! memory_location) { /* Move the program break numbytes further */ sbrk(numbytes); /* The new memory will be where the last valid * address left off */ memory_location = last_valid_address; /* We'll move the last valid address forward * numbytes */ last_valid_address = last_valid_address + numbytes; /* We need to initialize the mem_control_block */ current_location_mcb = memory_location; current_location_mcb->is_available = 0; current_location_mcb->size = numbytes; } /* Now, no matter what (well, except for error conditions), * memory_location has the address of the memory, including * the mem_control_block */ /* Move the pointer past the mem_control_block */ memory_location = memory_location + sizeof(struct mem_control_block); /* Return the pointer */ return memory_location; } 这就是我们的内存管理器。现在,我们只需要构建它,并在程序中使用它即可。 运行下面的命令来构建 malloc 兼容的分配程序(实际上,我们忽略了 realloc() 等一些函数,不过, malloc() 和 free() 才是最主要的函数): 清单 7. 编译分配程序 gcc -shared -fpic malloc.c -o malloc.so 该程序将生成一个名为 malloc.so 的文件,它是一个包含有我们的代码的共享库。 在 UNIX 系统中,现在您可以用您的分配程序来取代系统的 malloc(),做法如下: 清单 8. 替换您的标准的 malloc LD_PRELOAD=/path/to/malloc.so export LD_PRELOAD LD_PRELOAD 环境变量使动态链接器在加载任何可执行程序之前,先加载给定的共享库的符号。它还为特定库中的符号赋予优先权。因此,从现在起,该会话中的任何应用程序都将使用我们的 malloc(),而不是只有系统的应用程序能够使用。有一些应用程序不使用 malloc(),不过它们是例外。其他使用 realloc() 等其他内存管理函数的应用程序,或者错误地假定 malloc() 内部行为的那些应用程序,很可能会崩溃。ash shell 似乎可以使用我们的新 malloc() 很好地工作。 如果您想确保 malloc() 正在被使用,那么您应该通过向函数的入口点添加 write() 调用来进行测试。 我们的内存管理器在很多方面都还存在欠缺,但它可以有效地展示内存管理需要做什么事情。它的某些缺点包括: 由于它对系统中断点(一个全局变量)进行操作,所以它不能与其他分配程序或者 mmap 一起使用。 当分配内存时,在最坏的情形下,它将不得不遍历 全部进程内存;其中可能包括位于硬盘上的很多内存,这意味着操作系统将不得不花时间去向硬盘移入数据和从硬盘中移出数据。 没有很好的内存不足处理方案( malloc 只假定内存分配是成功的)。 它没有实现很多其他的内存函数,比如 realloc()。 由于 sbrk() 可能会交回比我们请求的更多的内存,所以在堆(heap)的末端会遗漏一些内存。 虽然 is_available 标记只包含一位信息,但它要使用完整的 4-字节 的字。 分配程序不是线程安全的。 分配程序不能将空闲空间拼合为更大的内存块。 分配程序的过于简单的匹配算法会导致产生很多潜在的内存碎片。 我确信还有很多其他问题。这就是为什么它只是一个例子! 其他 malloc 实现 malloc() 的实现有很多,这些实现各有优点与缺点。在设计一个分配程序时,要面临许多需要折衷的选择,其中包括: 分配的速度。 回收的速度。 有线程的环境的行为。 内存将要被用光时的行为。 局部缓存。 簿记(Bookkeeping)内存开销。 虚拟内存环境中的行为。 小的或者大的对象。 实时保证。 每一个实现都有其自身的优缺点集合。在我们的简单的分配程序中,分配非常慢,而回收非常快。另外,由于它在使用虚拟内存系统方面较差,所以它最适于处理大的对象。 还有其他许多分配程序可以使用。其中包括: Doug Lea Malloc:Doug Lea Malloc 实际上是完整的一组分配程序,其中包括 Doug Lea 的原始分配程序,GNU libc 分配程序和 ptmalloc。 Doug Lea 的分配程序有着与我们的版本非常类似的基本结构,但是它加入了索引,这使得搜索速度更快,并且可以将多个没有被使用的块组合为一个大的块。它还支持缓存,以便更快地再次使用最近释放的内存。 ptmalloc 是 Doug Lea Malloc 的一个扩展版本,支持多线程。在本文后面的 参考资料部分中,有一篇描述 Doug Lea 的 Malloc 实现的文章。 BSD Malloc:BSD Malloc 是随 4.2 BSD 发行的实现,包含在 FreeBSD 之中,这个分配程序可以从预先确实大小的对象构成的池中分配对象。它有一些用于对象大小的 size 类,这些对象的大小为 2 的若干次幂减去某一常数。所以,如果您请求给定大小的一个对象,它就简单地分配一个与之匹配的 size 类。这样就提供了一个快速的实现,但是可能会浪费内存。在 参考资料部分中,有一篇描述该实现的文章。 Hoard:编写 Hoard 的目标是使内存分配在多线程环境中进行得非常快。因此,它的构造以锁的使用为中心,从而使所有进程不必等待分配内存。它可以显著地加快那些进行很多分配和回收的多线程进程的速度。在 参考资料部分中,有一篇描述该实现的文章。 众多可用的分配程序中最有名的就是上述这些分配程序。如果您的程序有特别的分配需求,那么您可能更愿意编写一个定制的能匹配您的程序内存分配方式的分配程序。不过,如果不熟悉分配程序的设计,那么定制分配程序通常会带来比它们解决的问题更多的问题。要获得关于该主题的适当的介绍,请参阅 Donald Knuth 撰写的 The Art of Computer Programming Volume 1: Fundamental Algorithms 中的第 2.5 节“Dynamic Storage Allocation”(请参阅 参考资料中的链接)。它有点过时,因为它没有考虑虚拟内存环境,不过大部分算法都是基于前面给出的函数。 在 C++ 中,通过重载 operator new(),您可以以每个类或者每个模板为单位实现自己的分配程序。在 Andrei Alexandrescu 撰写的 Modern C++ Design 的第 4 章(“Small Object Allocation”)中,描述了一个小对象分配程序(请参阅 参考资料中的链接)。 基于 malloc() 的内存管理的缺点 不只是我们的内存管理器有缺点,基于 malloc() 的内存管理器仍然也有很多缺点,不管您使用的是哪个分配程序。对于那些需要保持长期存储的程序使用 malloc() 来管理内存可能会非常令人失望。如果您有大量的不固定的内存引用,经常难以知道它们何时被释放。生存期局限于当前函数的内存非常容易管理,但是对于生存期超出该范围的内存来说,管理内存则困难得多。而且,关于内存管理是由进行调用的程序还是由被调用的函数来负责这一问题,很多 API 都不是很明确。 因为管理内存的问题,很多程序倾向于使用它们自己的内存管理规则。C++ 的异常处理使得这项任务更成问题。有时好像致力于管理内存分配和清理的代码比实际完成计算任务的代码还要多!因此,我们将研究内存管理的其他选择。 回页首 半自动内存管理策略 引用计数 引用计数是一种 半自动(semi-automated)的内存管理技术,这表示它需要一些编程支持,但是它不需要您确切知道某一对象何时不再被使用。引用计数机制为您完成内存管理任务。 在引用计数中,所有共享的数据结构都有一个域来包含当前活动“引用”结构的次数。当向一个程序传递一个指向某个数据结构指针时,该程序会将引用计数增加 1。实质上,您是在告诉数据结构,它正在被存储在多少个位置上。然后,当您的进程完成对它的使用后,该程序就会将引用计数减少 1。结束这个动作之后,它还会检查计数是否已经减到零。如果是,那么它将释放内存。 这样做的好处是,您不必追踪程序中某个给定的数据结构可能会遵循的每一条路径。每次对其局部的引用,都将导致计数的适当增加或减少。这样可以防止在使用数据结构时释放该结构。不过,当您使用某个采用引用计数的数据结构时,您必须记得运行引用计数函数。另外,内置函数和第三方的库不会知道或者可以使用您的引用计数机制。引用计数也难以处理发生循环引用的数据结构。 要实现引用计数,您只需要两个函数 —— 一个增加引用计数,一个减少引用计数并当计数减少到零时释放内存。 一个示例引用计数函数集可能看起来如下所示: 清单 9. 基本的引用计数函数 /* Structure Definitions*/ /* Base structure that holds a refcount */ struct refcountedstruct { int refcount; } /* All refcounted structures must mirror struct * refcountedstruct for their first variables */ /* Refcount maintenance functions */ /* Increase reference count */ void REF(void *data) { struct refcountedstruct *rstruct; rstruct = (struct refcountedstruct *) data; rstruct->refcount++; } /* Decrease reference count */ void UNREF(void *data) { struct refcountedstruct *rstruct; rstruct = (struct refcountedstruct *) data; rstruct->refcount--; /* Free the structure if there are no more users */ if(rstruct->refcount == 0) { free(rstruct); } } REF 和 UNREF 可能会更复杂,这取决于您想要做的事情。例如,您可能想要为多线程程序增加锁,那么您可能想扩展 refcountedstruct,使它同样包含一个指向某个在释放内存之前要调用的函数的指针(类似于面向对象语言中的析构函数 —— 如果您的结构中包含这些指针,那么这是 必需的)。 当使用 REF 和 UNREF 时,您需要遵守这些指针的分配规则: UNREF 分配前左端指针(left-hand-side pointer)指向的值。 REF 分配后左端指针(left-hand-side pointer)指向的值。 在传递使用引用计数的结构的函数中,函数需要遵循以下这些规则: 在函数的起始处 REF 每一个指针。 在函数的结束处 UNREF 第一个指针。 以下是一个使用引用计数的生动的代码示例: 清单 10. 使用引用计数的示例 /* EXAMPLES OF USAGE */ /* Data type to be refcounted */ struct mydata { int refcount; /* same as refcountedstruct */ int datafield1; /* Fields specific to this struct */ int datafield2; /* other declarations would go here as appropriate */ }; /* Use the functions in code */ void dosomething(struct mydata *data) { REF(data); /* Process data */ /* when we are through */ UNREF(data); } struct mydata *globalvar1; /* Note that in this one, we don't decrease the * refcount since we are maintaining the reference * past the end of the function call through the * global variable */ void storesomething(struct mydata *data) { REF(data); /* passed as a parameter */ globalvar1 = data; REF(data); /* ref because of Assignment */ UNREF(data); /* Function finished */ } 由于引用计数是如此简单,大部分程序员都自已去实现它,而不是使用库。不过,它们依赖于 malloc 和 free 等低层的分配程序来实际地分配和释放它们的内存。 在 Perl 等高级语言中,进行内存管理时使用引用计数非常广泛。在这些语言中,引用计数由语言自动地处理,所以您根本不必担心它,除非要编写扩展模块。由于所有内容都必须进行引用计数,所以这会对速度产生一些影响,但它极大地提高了编程的安全性和方便性。以下是引用计数的益处: 实现简单。 易于使用。 由于引用是数据结构的一部分,所以它有一个好的缓存位置。 不过,它也有其不足之处: 要求您永远不要忘记调用引用计数函数。 无法释放作为循环数据结构的一部分的结构。 减缓几乎每一个指针的分配。 尽管所使用的对象采用了引用计数,但是当使用异常处理(比如 try 或 setjmp()/ longjmp())时,您必须采取其他方法。 需要额外的内存来处理引用。 引用计数占用了结构中的第一个位置,在大部分机器中最快可以访问到的就是这个位置。 在多线程环境中更慢也更难以使用。 C++ 可以通过使用 智能指针(smart pointers)来容忍程序员所犯的一些错误,智能指针可以为您处理引用计数等指针处理细节。不过,如果不得不使用任何先前的不能处理智能指针的代码(比如对 C 库的联接),实际上,使用它们的后果通实比不使用它们更为困难和复杂。因此,它通常只是有益于纯 C++ 项目。如果您想使用智能指针,那么您实在应该去阅读 Alexandrescu 撰写的 Modern C++ Design 一书中的“Smart Pointers”那一章。 内存池 内存池是另一种半自动内存管理方法。内存池帮助某些程序进行自动内存管理,这些程序会经历一些特定的阶段,而且每个阶段中都有分配给进程的特定阶段的内存。例如,很多网络服务器进程都会分配很多针对每个连接的内存 —— 内存的最大生存期限为当前连接的存在期。Apache 使用了池式内存(pooled memory),将其连接拆分为各个阶段,每个阶段都有自己的内存池。在结束每个阶段时,会一次释放所有内存。 在池式内存管理中,每次内存分配都会指定内存池,从中分配内存。每个内存池都有不同的生存期限。在 Apache 中,有一个持续时间为服务器存在期的内存池,还有一个持续时间为连接的存在期的内存池,以及一个持续时间为请求的存在期的池,另外还有其他一些内存池。因此,如果我的一系列函数不会生成比连接持续时间更长的数据,那么我就可以完全从连接池中分配内存,并知道在连接结束时,这些内存会被自动释放。另外,有一些实现允许注册 清除函数(cleanup functions),在清除内存池之前,恰好可以调用它,来完成在内存被清理前需要完成的其他所有任务(类似于面向对象中的析构函数)。 要在自己的程序中使用池,您既可以使用 GNU libc 的 obstack 实现,也可以使用 Apache 的 Apache Portable Runtime。GNU obstack 的好处在于,基于 GNU 的 Linux 发行版本中默认会包括它们。Apache Portable Runtime 的好处在于它有很多其他工具,可以处理编写多平台服务器软件所有方面的事情。要深入了解 GNU obstack 和 Apache 的池式内存实现,请参阅 参考资料部分中指向这些实现的文档的链接。 下面的假想代码列表展示了如何使用 obstack: 清单 11. obstack 的示例代码 #include #include /* Example code listing for using obstacks */ /* Used for obstack macros (xmalloc is a malloc function that exits if memory is exhausted */ #define obstack_chunk_alloc xmalloc #define obstack_chunk_free free /* Pools */ /* Only permanent allocations should go in this pool */ struct obstack *global_pool; /* This pool is for per-connection data */ struct obstack *connection_pool; /* This pool is for per-request data */ struct obstack *request_pool; void allocation_failed() { exit(1); } int main() { /* Initialize Pools */ global_pool = (struct obstack *) xmalloc (sizeof (struct obstack)); obstack_init(global_pool); connection_pool = (struct obstack *) xmalloc (sizeof (struct obstack)); obstack_init(connection_pool); request_pool = (struct obstack *) xmalloc (sizeof (struct obstack)); obstack_init(request_pool); /* Set the error handling function */ obstack_alloc_failed_handler = &allocation_failed; /* Server main loop */ while(1) { wait_for_connection(); /* We are in a connection */ while(more_requests_available()) { /* Handle request */ handle_request(); /* Free all of the memory allocated * in the request pool */ obstack_free(request_pool, NULL); } /* We're finished with the connection, time * to free that pool */ obstack_free(connection_pool, NULL); } } int handle_request() { /* Be sure that all object allocations are allocated * from the request pool */ int bytes_i_need = 400; void *data1 = obstack_alloc(request_pool, bytes_i_need); /* Do stuff to process the request */ /* return */ return 0; } 基本上,在操作的每一个主要阶段结束之后,这个阶段的 obstack 会被释放。不过,要注意的是,如果一个过程需要分配持续时间比当前阶段更长的内存,那么它也可以使用更长期限的 obstack,比如连接或者全局内存。传递给 obstack_free() 的 NULL 指出它应该释放 obstack 的全部内容。可以用其他的值,但是它们通常不怎么实用。 使用池式内存分配的益处如下所示: 应用程序可以简单地管理内存。 内存分配和回收更快,因为每次都是在一个池中完成的。分配可以在 O(1) 时间内完成,释放内存池所需时间也差不多(实际上是 O(n) 时间,不过在大部分情况下会除以一个大的因数,使其变成 O(1))。 可以预先分配错误处理池(Error-handling pools),以便程序在常规内存被耗尽时仍可以恢复。 有非常易于使用的标准实现。 池式内存的缺点是: 内存池只适用于操作可以分阶段的程序。 内存池通常不能与第三方库很好地合作。 如果程序的结构发生变化,则不得不修改内存池,这可能会导致内存管理系统的重新设计。 您必须记住需要从哪个池进行分配。另外,如果在这里出错,就很难捕获该内存池。 回页首 垃圾收集 垃圾收集(Garbage collection)是全自动地检测并移除不再使用的数据对象。垃圾收集器通常会在当可用内存减少到少于一个具体的阈值时运行。通常,它们以程序所知的可用的一组“基本”数据 —— 栈数据、全局变量、寄存器 —— 作为出发点。然后它们尝试去追踪通过这些数据连接到每一块数据。收集器找到的都是有用的数据;它没有找到的就是垃圾,可以被销毁并重新使用这些无用的数据。为了有效地管理内存,很多类型的垃圾收集器都需要知道数据结构内部指针的规划,所以,为了正确运行垃圾收集器,它们必须是语言本身的一部分。 收集器的类型 复制(copying): 这些收集器将内存存储器分为两部分,只允许数据驻留在其中一部分上。它们定时地从“基本”的元素开始将数据从一部分复制到另一部分。内存新近被占用的部分现在成为活动的,另一部分上的所有内容都认为是垃圾。另外,当进行这项复制操作时,所有指针都必须被更新为指向每个内存条目的新位置。因此,为使用这种垃圾收集方法,垃圾收集器必须与编程语言集成在一起。 标记并清理(Mark and sweep):每一块数据都被加上一个标签。不定期的,所有标签都被设置为 0,收集器从“基本”的元素开始遍历数据。当它遇到内存时,就将标签标记为 1。最后没有被标记为 1 的所有内容都认为是垃圾,以后分配内存时会重新使用它们。 增量的(Incremental):增量垃圾收集器不需要遍历全部数据对象。因为在收集期间的突然等待,也因为与访问所有当前数据相关的缓存问题(所有内容都不得不被页入(page-in)),遍历所有内存会引发问题。增量收集器避免了这些问题。 保守的(Conservative):保守的垃圾收集器在管理内存时不需要知道与数据结构相关的任何信息。它们只查看所有数据类型,并假定它们 可以全部都是指针。所以,如果一个字节序列可以是一个指向一块被分配的内存的指针,那么收集器就将其标记为正在被引用。有时没有被引用的内存会被收集,这样会引发问题,例如,如果一个整数域中包含一个值,该值是已分配内存的地址。不过,这种情况极少发生,而且它只会浪费少量内存。保守的收集器的优势是,它们可以与任何编程语言相集成。 Hans Boehm 的保守垃圾收集器是可用的最流行的垃圾收集器之一,因为它是免费的,而且既是保守的又是增量的,可以使用 --enable-redirect-malloc 选项来构建它,并且可以将它用作系统分配程序的简易替代者(drop-in replacement)(用 malloc/ free 代替它自己的 API)。实际上,如果这样做,您就可以使用与我们在示例分配程序中所使用的相同的 LD_PRELOAD 技巧,在系统上的几乎任何程序中启用垃圾收集。如果您怀疑某个程序正在泄漏内存,那么您可以使用这个垃圾收集器来控制进程。在早期,当 Mozilla 严重地泄漏内存时,很多人在其中使用了这项技术。这种垃圾收集器既可以在 Windows® 下运行,也可以在 UNIX 下运行。 垃圾收集的一些优点: 您永远不必担心内存的双重释放或者对象的生命周期。 使用某些收集器,您可以使用与常规分配相同的 API。 其缺点包括: 使用大部分收集器时,您都无法干涉何时释放内存。 在多数情况下,垃圾收集比其他形式的内存管理更慢。 垃圾收集错误引发的缺陷难于调试。 如果您忘记将不再使用的指针设置为 null,那么仍然会有内存泄漏。 回页首 结束语 一切都需要折衷:性能、易用、易于实现、支持线程的能力等,这里只列出了其中的一些。为了满足项目的要求,有很多内存管理模式可以供您使用。每种模式都有大量的实现,各有其优缺点。对很多项目来说,使用编程环境默认的技术就足够了,不过,当您的项目有特殊的需要时,了解可用的选择将会有帮助。下表对比了本文中涉及的内存管理策略。 表 1. 内存分配策略的对比 策略 分配速度 回收速度 局部缓存 易用性 通用性 实时可用 SMP 线程友好 定制分配程序 取决于实现 取决于实现 取决于实现 很难 无 取决于实现 取决于实现 简单分配程序 内存使用少时较快 很快 差 容易 高 否 否 GNU malloc 中 快 中 容易 高 否 中 Hoard 中 中 中 容易 高 否 是 引用计数 N/A N/A 非常好 中 中 是(取决于 malloc 实现) 取决于实现 池 中 非常快 极好 中 中 是(取决于 malloc 实现) 取决于实现 垃圾收集 中(进行收集时慢) 中 差 中 中 否 几乎不 增量垃圾收集 中 中 中 中 中 否 几乎不 增量保守垃圾收集 中 中 中 容易 高 否 几乎不 参考资料 您可以参阅本文在 developerWorks 全球站点上的 英文原文。 Web 上的文档 GNU C Library 手册的 obstacks 部分 提供了 obstacks 编程接口。 Apache Portable Runtime 文档 描述了它们的池式分配程序的接口。 基本的分配程序 Doug Lea 的 Malloc 是最流行的内存分配程序之一。 BSD Malloc 用于大部分基于 BSD 的系统中。 ptmalloc 起源于 Doug Lea 的 malloc,用于 GLIBC 之中。 Hoard 是一个为多线程应用程序优化的 malloc 实现。 GNU Memory-Mapped Malloc(GDB 的组成部分) 是一个基于 mmap() 的 malloc 实现。 池式分配程序 GNU Obstacks(GNU Libc 的组成部分)是安装最多的池式分配程序,因为在每一个基于 glibc 的系统中都有它。 Apache 的池式分配程序(Apache Portable Runtime 中) 是应用最为广泛的池式分配程序。 Squid 有其自己的池式分配程序。 NetBSD 也有其自己的池式分配程序。 talloc 是一个池式分配程序,是 Samba 的组成部分。 智能指针和定制分配程序 Loki C++ Library 有很多为 C++ 实现的通用模式,包括智能指针和一个定制的小对象分配程序。 垃圾收集器 Hahns Boehm Conservative Garbage Collector 是最流行的开源垃圾收集器,它可以用于常规的 C/C++ 程序。 关于现代操作系统中的虚拟内存的文章 Marshall Kirk McKusick 和 Michael J. Karels 合著的 A New Virtual Memory Implementation for Berkeley UNIX 讨论了 BSD 的 VM 系统。 Mel Gorman's Linux VM Documentation 讨论了 Linux VM 系统。 关于 malloc 的文章 Poul-Henning Kamp 撰写的 Malloc in Modern Virtual Memory Environments 讨论的是 malloc 以及它如何与 BSD 虚拟内存交互。 Berger、McKinley、Blumofe 和 Wilson 合著的 Hoard -- a Scalable Memory Allocator for Multithreaded Environments 讨论了 Hoard 分配程序的实现。 Marshall Kirk McKusick 和 Michael J. Karels 合著的 Design of a General Purpose Memory Allocator for the 4.3BSD UNIX Kernel 讨论了内核级的分配程序。 Doug Lea 撰写的 A Memory Allocator 给出了一个关于设计和实现分配程序的概述,其中包括设计选择与折衷。 Emery D. Berger 撰写的 Memory Management for High-Performance Applications 讨论的是定制内存管理以及它如何影响高性能应用程序。 关于定制分配程序的文章 Doug Lea 撰写的 Some Storage Management Techniques for Container Classes 描述的是为 C++ 类编写定制分配程序。 Berger、Zorn 和 McKinley 合著的 Composing High-Performance Memory Allocators 讨论了如何编写定制分配程序来加快具体工作的速度。 Berger、Zorn 和 McKinley 合著的 Reconsidering Custom Memory Allocation 再次提及了定制分配的主题,看是否真正值得为其费心。 关于垃圾收集的文章 Paul R. Wilson 撰写的 Uniprocessor Garbage Collection Techniques 给出了垃圾收集的一个基本概述。 Benjamin Zorn 撰写的 The Measured Cost of Garbage Collection 给出了关于垃圾收集和性能的硬数据(hard data)。 Hans-Juergen Boehm 撰写的 Memory Allocation Myths and Half-Truths 给出了关于垃圾收集的神话(myths)。 Hans-Juergen Boehm 撰写的 Space Efficient Conservative Garbage Collection 是一篇描述他的用于 C/C++ 的垃圾收集器的文章。 Web 上的通用参考资料 内存管理参考 中有很多关于内存管理参考资料和技术文章的链接。 关于内存管理和内存层级的 OOPS Group Papers 是非常好的一组关于此主题的技术文章。 C++ 中的内存管理讨论的是为 C++ 编写定制的分配程序。 Programming Alternatives: Memory Management 讨论了程序员进行内存管理时的一些选择。 垃圾收集 FAQ 讨论了关于垃圾收集您需要了解的所有内容。 Richard Jones 的 Garbage Collection Bibliography 有指向任何您想要的关于垃圾收集的文章的链接。 书籍 Michael Daconta 撰写的 C++ Pointers and Dynamic Memory Management 介绍了关于内存管理的很多技术。 Frantisek Franek 撰写的 Memory as a Programming Concept in C and C++ 讨论了有效使用内存的技术与工具,并给出了在计算机编程中应当引起注意的内存相关错误的角色。 Richard Jones 和 Rafael Lins 合著的 Garbage Collection: Algorithms for Automatic Dynamic Memory Management 描述了当前使用的最常见的垃圾收集算法。 在 Donald Knuth 撰写的 The Art of Computer Programming 第 1 卷 Fundamental Algorithms 的第 2.5 节“Dynamic Storage Allocation”中,描述了实现基本的分配程序的一些技术。 在 Donald Knuth 撰写的 The Art of Computer Programming 第 1 卷 Fundamental Algorithms 的第 2.3.5 节“Lists and Garbage Collection”中,讨论了用于列表的垃圾收集算法。 Andrei Alexandrescu 撰写的 Modern C++ Design 第 4 章“Small Object Allocation”描述了一个比 C++ 标准分配程序效率高得多的一个高速小对象分配程序。 Andrei Alexandrescu 撰写的 Modern C++ Design 第 7 章“Smart Pointers”描述了在 C++ 中智能指针的实现。 Jonathan 撰写的 Programming from the Ground Up 第 8 章“Intermediate Memory Topics”中有本文使用的简单分配程序的一个汇编语言版本。 来自 developerWorks 自我管理数据缓冲区内存 (developerWorks,2004 年 1 月)略述了一个用于管理内存的自管理的抽象数据缓存器的伪 C (pseudo-C)实现。 A framework for the user defined malloc replacement feature (developerWorks,2002 年 2 月)展示了如何利用 AIX 中的一个工具,使用自己设计的内存子系统取代原有的内存子系统。 掌握 Linux 调试技术 (developerWorks,2002 年 8 月)描述了可以使用调试方法的 4 种不同情形:段错误、内存溢出、内存泄漏和挂起。 在 处理 Java 程序中的内存漏洞 (developerWorks,2001 年 2 月)中,了解导致 Java 内存泄漏的原因,以及何时需要考虑它们。 在 developerWorks Linux 专区中,可以找到更多为 Linux 开发人员准备的参考资料。 从 developerWorks 的 Speed-start your Linux app 专区中,可以下载运行于 Linux 之上的 IBM 中间件产品的免费测试版本,其中包括 WebSphere® Studio Application Developer、WebSphere Application Server、DB2® Universal Database、Tivoli® Access Manager 和 Tivoli Directory Server,查找 how-to 文章和技术支持。 通过参与 developerWorks blogs 加入到 developerWorks 社区。 可以在 Developer Bookstore Linux 专栏中定购 打折出售的 Linux 书籍。 关于作者 Jonathan Bartlett 是 Programming from the Ground Up 一书的作者,这本书介绍的是 Linux 汇编语言编程。Jonathan Bartlett 是 New Media Worx 的总开发师,负责为客户开发 Web、视频、kiosk 和桌面应用程序。您可以通过 johnnyb@eskimo.com 与 Jonathan 联系。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值