- Class
tf.contrib.rnn.BasicLSTMCell - Class
tf.nn.rnn_cell.BasicLSTMCell 其实两个是等价的,只是版本的问题,表示定义一个LSTM结构,所使用的变量会自动进行声明。
Args:
num_units: int, The number of units in the LSTM cell.神经元数量forget_bias: float, The bias added to forget gates (see above). Must set to0.0manually when restoring from CudnnLSTM-trained checkpoints. 遗忘的偏置是0-1的数,1全记得,0全忘记state_is_tuple: If True, accepted and returned states are 2-tuples of thec_stateandm_state. If False, they are concatenated along the column axis. The latter behavior will soon be deprecated.最好是true,返回元祖。activation: Activation function of the inner states. Default:tanh. 激活函数,默认tanhreuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If notTrue, and the existing scope already has the given variables, an error is raised. 重使用已存在的变量-
name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases.When restoring from CudnnLSTM-trained checkpoints, must use
CudnnCompatibleLSTMCellinstead.
- tf.contrib.rnn.MultiRNNCell()
- 表示使用MultiRNNCell类实现深层循环网络中每一个时刻的前向传播。
本文深入解析TensorFlow中BasicLSTMCell类的参数及其作用,包括神经元数量、遗忘偏置、状态元组设置、激活函数选择及变量复用。同时介绍了如何使用MultiRNNCell类构建深层循环网络。
2366

被折叠的 条评论
为什么被折叠?



