《Java虚拟机原理图解》 1.2.2、Class文件中的常量池详解(上)

主题:   http://blog.youkuaiyun.com/column/details/jvm-principle.html
《Java虚拟机原理图解》5. JVM类加载器机制与类加载过程
《Java虚拟机原理图解》4.JVM机器指令集
《Java虚拟机原理图解》3、JVM运行时数据区

 

NO1.常量池在class文件的什么位置?

          我的上一篇文章《Java虚拟机原理图解》 1、class文件基本组织结构中已经提到了class的文件结构,在class文件中的魔数、副版本号、主版本之后,紧接着就是常量池的数据区域了,如下图用红线包括的位置:

  

     知道了常量池的位置后,然后让我们来揭秘常量池里究竟有什么东西吧~     

NO2.常量池的里面是怎么组织的?

      常量池的组织很简单,前端的两个字节占有的位置叫做常量池计数器(constant_pool_count),它记录着常量池的组成元素  常量池项(cp_info) 的个数。紧接着会排列着constant_pool_count-1常量池项(cp_info)。如下图所示:

   

 

NO3.常量池项 (cp_info) 的结构是什么?

   每个常量池项(cp_info) 都会对应记录着class文件中的某中类型的字面量。让我们先来了解一下常量池项(cp_info)的结构吧:

    

     JVM虚拟机规定了不同的tag值和不同类型的字面量对应关系如下:

    

           所以根据cp_info中的tag 不同的值,可以将cp_info 更细化为以下结构体:

                   CONSTANT_Utf8_info,CONSTANT_Integer_info,CONSTANT_Float_info,CONSTANT_Long_info,
            CONSTANT_Double_info,CONSTANT_Class_info,CONSTANT_String_info,CONSTANT_Fieldref_info,
            CONSTANT_Methodref_info,CONSTANT_InterfaceMethodref_info,CONSTANT_NameAndType_info,CONSTANT_MethodHandle_info,
            CONSTANT_MethodType_info,CONSTANT_InvokeDynamic_info

           

             现在让我们看一下细化了的常量池的结构会是类似下图所示的样子:

                
          

NO4.常量池能够表示那些信息?

 

 

NO5. int和float数据类型的常量在常量池中是怎样表示和存储的?(CONSTANT_Integer_info, CONSTANT_Float_info)

 Java语言规范规定了 int类型和Float 类型的数据类型占用 4 个字节的空间。那么存在于class字节码文件中的该类型的常量是如何存储的呢?相应地,在常量池中,将 int和Float类型的常量分别使用CONSTANT_Integer_info和 Constant_float_info表示,他们的结构如下所示:

举例:建下面的类 IntAndFloatTest.java,在这个类中,我们声明了五个变量,但是取值就两种int类型的10 和Float类型的11f

 

[java]  view plain  copy
  1. package com.louis.jvm;  
  2.   
  3. public class IntAndFloatTest {  
  4.       
  5.     private final int a = 10;  
  6.     private final int b = 10;  
  7.     private float c = 11f;  
  8.     private float d = 11f;  
  9.     private float e = 11f;  
  10.       
  11. }  


 

然后用编译器编译成IntAndFloatTest.class字节码文件,我们通过javap -v IntAndFloatTest 指令来看一下其常量池中的信息,可以看到虽然我们在代码中写了两次10 和三次11f,但是常量池中,就只有一个常量10 和一个常量11f,如下图所示:

从结果上可以看到常量池第#8 个常量池项(cp_info) 就是CONSTANT_Integer_info,值为10;第#23常量池项(cp_info) 就是CONSTANT_Float_info,值为11f。(常量池中其他的东西先别纠结啦,我们会面会一一讲解的哦)。

 代码中所有用到 int 类型 10 的地方,会使用指向常量池的指针值#8 定位到第#8 个常量池项(cp_info),即值为10的结构体 CONSTANT_Integer_info,而用到float类型的11f时,也会指向常量池的指针值#23来定位到第#23个常量池项(cp_info) 即值为11f的结构体CONSTANT_Float_info。如下图所示:

 

NO6. long和 double数据类型的常量在常量池中是怎样表示和存储的?(CONSTANT_Long_info、CONSTANT_Double_info )

Java语言规范规定了 long 类型和 double类型的数据类型占用8 个字节的空间。那么存在于class 字节码文件中的该类型的常量是如何存储的呢?相应地,在常量池中,将longdouble类型的常量分别使用CONSTANT_Long_info和Constant_Double_info表示,他们的结构如下所示:

     举例:建下面的类 LongAndDoubleTest.java,在这个类中,我们声明了六个变量,但是取值就两种Long 类型的-6076574518398440533L 和Double 类型的10.1234567890D

[java]  view plain  copy
  1. package com.louis.jvm;  
  2.   
  3. public class LongAndDoubleTest {  
  4.       
  5.     private long a = -6076574518398440533L;  
  6.     private long b = -6076574518398440533L;  
  7.     private long c = -6076574518398440533L;  
  8.     private double d = 10.1234567890D;  
  9.     private double e = 10.1234567890D;  
  10.     private double f = 10.1234567890D;  
  11. }  


 

     然后用编译器编译成 LongAndDoubleTest.class 字节码文件,我们通过javap -v LongAndDoubleTest指令来看一下其常量池中的信息,可以看到虽然我们在代码中写了三次-6076574518398440533L 和三次10.1234567890D,但是常量池中,就只有一个常量-6076574518398440533L 和一个常量10.1234567890D,如下图所示:

      从结果上可以看到常量池第 #18 个常量池项(cp_info) 就是CONSTANT_Long_info,值为-6076574518398440533L ;第 #26常量池项(cp_info) 就是CONSTANT_Double_info,值为10.1234567890D。(常量池中其他的东西先别纠结啦,我们会面会一一讲解的哦)。

       代码中所有用到 long 类型-6076574518398440533L 的地方,会使用指向常量池的指针值#18 定位到第#18 个常量池项(cp_info),即值为-6076574518398440533L 的结构体CONSTANT_Long_info,而用到double类型的10.1234567890D时,也会指向常量池的指针值#26 来定位到第 #26 个常量池项(cp_info) 即值为10.1234567890D的结构体CONSTANT_Double_info。如下图所示:

 

NO7. String类型的字符串常量在常量池中是怎样表示和存储的?(CONSTANT_String_info、CONSTANT_Utf8_info)

      对于字符串而言,JVM会将字符串类型的字面量以UTF-8 编码格式存储到在class字节码文件中。这么说可能有点摸不着北,我们先从直观的Java源码中中出现的用双引号"" 括起来的字符串来看,在编译器编译的时候,都会将这些字符串转换成CONSTANT_String_info结构体,然后放置于常量池中。其结构如下所示:

     如上图所示的结构体,CONSTANT_String_info结构体中的string_index的值指向了CONSTANT_Utf8_info结构体,而字符串的utf-8编码数据就在这个结构体之中。如下图所示:

请看一例,定义一个简单的StringTest.java类,然后在这个类里加一个"JVM原理" 字符串,然后,我们来看看它在class文件中是怎样组织的。

[java]  view plain  copy
  1. package com.louis.jvm;  
  2.   
  3. public class StringTest {  
  4.     private String s1 = "JVM原理";  
  5.     private String s2 = "JVM原理";  
  6.     private String s3 = "JVM原理";  
  7.     private String s4 = "JVM原理";  
  8. }  

将Java源码编译成StringTest.class文件后,在此文件的目录下执行 javap -v StringTest 命令,会看到如下的常量池信息的轮廓:

 

 (PS :使用javap -v 指令能看到易于我们阅读的信息,查看真正的字节码文件可以使用HEXWin、NOTEPAD++、UtraEdit 等工具。)

       在面的图中,我们可以看到CONSTANT_String_info结构体位于常量池的第#15个索引位置。而存放"Java虚拟机原理" 字符串的 UTF-8编码格式的字节数组被放到CONSTANT_Utf8_info结构体中,该结构体位于常量池的第#16个索引位置。上面的图只是看了个轮廓,让我们再深入地看一下它们的组织吧。请看下图:

由上图可见:“JVM原理”的UTF-8编码的数组是:4A564D E5 8E 9FE7 90 86,并且存入了CONSTANT_Utf8_info结构体中。

  

NO8. 类文件中定义的类名和类中使用到的类在常量池中是怎样被组织和存储的?(CONSTANT_Class_info)

     JVM会将某个Java 类中所有使用到了的类的完全限定名 以二进制形式的完全限定名 封装成CONSTANT_Class_info结构体中,然后将其放置到常量池里。CONSTANT_Class_info 的tag值为 7 。其结构如下:

        

Tips: 类的完全限定名二进制形式的完全限定名

      在某个Java源码中,我们会使用很多个类,比如我们定义了一个 ClassTest的类,并把它放到com.louis.jvm 包下,则 ClassTest类的完全限定名为com.louis.jvm.ClassTest,将JVM编译器将类编译成class文件后,此完全限定名在class文件中,是以二进制形式的完全限定名存储的,即它会把完全限定符的"."换成"/" ,即在class文件中存储的 ClassTest类的完全限定名称是"com/louis/jvm/ClassTest"。因为这种形式的完全限定名是放在了class二进制形式的字节码文件中,所以就称之为 二进制形式的完全限定名。

举例,我们定义一个很简单的ClassTest类,来看一下常量池是怎么对类的完全限定名进行存储的。

[java]  view plain  copy
  1. package com.jvm;  
  2. import  java.util.Date;  
  3. public class ClassTest {  
  4.     private Date date =new Date();  
  5. }  

将Java源码编译成ClassTest.class文件后,在此文件的目录下执行 javap -v ClassTest 命令,会看到如下的常量池信息的轮廓:

如上图所示,在ClassTest.class文件的常量池中,共有 3 个CONSTANT_Class_info结构体,分别表示ClassTest 中用到的Class信息。 我们就看其中一个表示com/jvm.ClassTestCONSTANT_Class_info 结构体。它在常量池中的位置是#1,它的name_index值为#2,它指向了常量池的第2 个常量池项,如下所示:

注意:

     对于某个类而言,其class文件中至少要有两个CONSTANT_Class_info常量池项,用来表示自己的类信息和其父类信息。(除了java.lang.Object类除外,其他的任何类都会默认继承自java.lang.Object)如果类声明实现了某些接口,那么接口的信息也会生成对应的CONSTANT_Class_info常量池项。

  除此之外,如果在类中使用到了其他的类,只有真正使用到了相应的类,JDK编译器才会将类的信息组成CONSTANT_Class_info常量池项放置到常量池中。如下图:

[java]  view plain  copy
  1. package com.louis.jvm;  
  2.   
  3. import java.util.Date;  
  4.   
  5. public  class Other{  
  6.     private Date date;  
  7.       
  8.     public Other()  
  9.     {  
  10.         Date da;  
  11.     }  
  12. }  
  上述的Other的类,在JDK将其编译成class文件时,常量池中并没有java.util.Date对应的CONSTANT_Class_info常量池项,为什么呢?

   在Other类中虽然定义了Date类型的两个变量date、da,但是JDK编译的时候,认为你只是声明了“Ljava/util/Date”类型的变量,并没有实际使用到Ljava/util/Date类。将类信息放置到常量池中的目的,是为了在后续的代码中有可能会反复用到它。很显然,JDK在编译Other类的时候,会解析到Date类有没有用到,发现该类在代码中就没有用到过,所以就认为没有必要将它的信息放置到常量池中了。

   将上述的Other类改写一下,仅使用new Date(),如下图所示:

 

[java]  view plain  copy
  1. package com.louis.jvm;  
  2.   
  3. import java.util.Date;  
  4.   
  5. public  class Other{  
  6.     public Other()  
  7.     {  
  8.         new Date();  
  9.     }  
  10. }  

  这时候使用javap -v Other ,可以查看到常量池中有表示java/util/Date的常量池项:

 

 

  总结:

     1.对于某个类或接口而言,其自身、父类和继承或实现的接口的信息会被直接组装成CONSTANT_Class_info常量池项放置到常量池中;  

     2. 类中或接口中使用到了其他的类,只有在类中实际使用到了该类时,该类的信息才会在常量池中有对应的CONSTANT_Class_info常量池项;

     3. 类中或接口中仅仅定义某种类型的变量,JDK只会将变量的类型描述信息以UTF-8字符串组成CONSTANT_Utf8_info常量池项放置到常量池中,上面在类中的private Date date;JDK编译器只会将表示date的数据类型的“Ljava/util/Date”字符串放置到常量池中。

 

 

 

 

 

转载于:https://my.oschina.net/u/2365905/blog/1542253

标题“51单片机通过MPU6050-DMP获取姿态角例程”析 “51单片机通过MPU6050-DMP获取姿态角例程”是一个基于51系列单片机(一种常见的8位微控制器)的程序示例,用于读取MPU6050传感器的数据,并通过其内置的数字运动处理器(DMP)计算设备的姿态角(如倾斜角度、旋转角度等)。MPU6050是一款集成三轴加速度计和三轴陀螺仪的六自由度传感器,广泛应用于运动控制和姿态检测领域。该例程利用MPU6050的DMP功能,由DMP处理复杂的运动学算法,例如姿态融合,将加速度计和陀螺仪的数据进行整合,从而提供稳定且实时的姿态估计,减轻主控MCU的计算负担。最终,姿态角数据通过LCD1602显示屏以字符形式可视化展示,为用户提供直观的反馈。 从标签“51单片机 6050”可知,该项目主要涉及51单片机和MPU6050传感器这两个关键硬件组件。51单片机基于8051内核,因编程简单、成本低而被广泛应用;MPU6050作为惯性测量单元(IMU),可测量设备的线性和角速度。文件名“51-DMP-NET”可能表示这是一个与51单片机及DMP相关的网络资源或代码库,其中可能包含C语言等适合51单片机的编程语言的源代码、配置文件、用户手册、示例程序,以及可能的调试工具或IDE项目文件。 实现该项目需以下步骤:首先是硬件连接,将51单片机与MPU6050通过I2C接口正确连接,同时将LCD1602连接到51单片机的串行数据线和控制线上;接着是初始化设置,配置51单片机的I/O端口,初始化I2C通信协议,设置MPU6050的工作模式和数据输出速率;然后是DMP配置,启用MPU6050的DMP功能,加载预编译的DMP固件,并设置DMP输出数据的中断;之后是数据读取,通过中断服务程序从DMP接收姿态角数据,数据通常以四元数或欧拉角形式呈现;再接着是数据显示,将姿态角数据转换为可读的度数格
MathorCup高校数学建模挑战赛是一项旨在提升学生数学应用、创新和团队协作能力的年度竞赛。参赛团队需在规定时间内决实际问题,运用数学建模方法进行分析并提出决方案。2021年第十一届比赛的D题就是一个典型例子。 MATLAB是决这问题的常用工具。它是一款强大的数值计算和编程软件,广泛应用于数学建模、数据分析和科学计算。MATLAB拥有丰富的函数库,涵盖线性代数、统计分析、优化算法、信号处理等多种数学操作,方便参赛者构建模型和实现算法。 在提供的文件列表中,有几个关键文件: d题论文(1).docx:这可能是参赛队伍对D题的答报告,详细记录了他们对问题的理、建模过程、求方法和结果分析。 D_1.m、ratio.m、importfile.m、Untitled.m、changf.m、pailiezuhe.m、huitu.m:这些是MATLAB源代码文件,每个文件可能对应一个特定的计算步骤或功能。例如: D_1.m 可能是主要的建模代码; ratio.m 可能用于计算某种比例或比率; importfile.m 可能用于导入数据; Untitled.m 可能是未命名的脚本,包含临时或测试代码; changf.m 可能涉及函数变换; pailiezuhe.m 可能与矩阵的排列组合相关; huitu.m 可能用于绘制回路图或流程图。 matlab111.mat:这是一个MATLAB数据文件,存储了变量或矩阵等数据,可能用于后续计算或分析。 D-date.mat:这个文件可能包含与D题相关的特定日期数据,或是模拟过程中用到的时间序列数据。 从这些文件可以推测,参赛队伍可能利用MATLAB完成了数据预处理、模型构建、数值模拟和结果可视化等一系列工作。然而,具体的建模细节和决方案需要查看压后的文件内容才能深入了。 在数学建模过程中,团队需深入理问题本质,选择合适的数学模
以下是关于三种绘制云图或等高线图算法的介绍: 一、点距离反比插值算法 该算法的核心思想是基于已知数据点的值,计算未知点的值。它认为未知点的值与周围已知点的值相关,且这种关系与距离呈反比。即距离未知点越近的已知点,对未知点值的影响越大。具体来说,先确定未知点周围若干个已知数据点,计算这些已知点到未知点的距离,然后根据距离的倒数对已知点的值进行加权求和,最终得到未知点的值。这种方法简单直观,适用于数据点分布相对均匀的情况,能较好地反映数据在空间上的变化趋势。 二、双线性插值算法 这种算法主要用于处理二维数据的插值问题。它首先将数据点所在的区域划分为一个个小的矩形单元。当需要计算某个未知点的值时,先找到该点所在的矩形单元,然后利用矩形单元四个顶点的已知值进行插值计算。具体过程是先在矩形单元的一对对边上分别进行线性插值,得到两个中间值,再对这两个中间值进行线性插值,最终得到未知点的值。双线性插值能够较为平滑地过渡数据值,特别适合处理图像缩放、地理数据等二维场景中的插值问题,能有效避免插值结果出现明显的突变。 三、面距离反比 + 双线性插值算法 这是一种结合了面距离反比和双线性插值两种方法的算法。它既考虑了数据点所在平面区域对未知点值的影响,又利用了双线性插值的平滑特性。在计算未知点的值时,先根据面距离反比的思想,确定与未知点所在平面区域相关的已知数据点集合,这些点对该平面区域的值有较大影响。然后在这些已知点构成的区域内,采用双线性插值的方法进行进一步的插值计算。这种方法综合了两种算法的优点,既能够较好地反映数据在空间上的整体分布情况,又能保证插值结果的平滑性,适用于对插值精度和数据平滑性要求较高的复杂场景。
内容概要:本文详细介绍并展示了基于Java技术实现的微信小程序外卖点餐系统的设计与实现。该系统旨在通过现代信息技术手段,提升外卖点餐管理的效率和用户体验。系统涵盖管理员、外卖员、餐厅和用户四个角色,提供了包括菜品管理、订单管理、外卖员管理、用户管理等功能模块。后台采用SSM框架(Spring + Spring MVC + MyBatis)进行开发,前端使用微信小程序,数据库采用MySQL,确保系统的稳定性和安全性。系统设计遵循有效性、高可靠性、高安全性、先进性和采用标准技术的原则,以满足不同用户的需求。此外,文章还进行了详细的可行性分析和技术选型,确保系统开发的合理性与可行性。 适用人群:计算机科学与技术专业的学生、从事Java开发的技术人员、对微信小程序开发感兴趣的开发者。 使用场景及目标:①为中小型餐饮企业提供低成本、高效的外卖管理决方案;②提升外卖点餐的用户体验,实现便捷的点餐、支付和评价功能;③帮助传统餐饮企业通过数字化工具重构消费场景,实现线上线下一体化运营。 其他说明:该系统通过详细的系统分析、设计和实现,确保了系统的稳定性和易用性。系统不仅具备丰富的功能,还注重用户体验和数据安全。通过本项目的开发,作者不仅掌握了微信小程序和Java开发技术,还提升了独立决问题的能力。系统未来仍需进一步优化和完善,特别是在功能模块的细化和用户体验
Retinex理论是计算机视觉和图像处理领域中一种重要的图像增强技术,由生理学家Walter S. McCann和James G. Gilchrist在20世纪70年代提出,旨在模拟人视觉系统对光照变化的鲁棒性。该理论将图像视为亮度和色度的函数,分别对应局部强度和颜色信息。其核心思想是将图像分为反射分量(物体自身颜色)和光照分量(环境光影响),通过分离并独立调整这两个分量来增强图像对比度和细节。 在Matlab中实现Retinex算法通常包括以下步骤:首先对输入图像进行预处理,如灰度化或色彩空间转换(例如从RGB到Lab或YCbCr),具体取决于图像特性;然后应用Retinex理论,通常涉及对图像进行高斯滤波以平滑图像,并计算局部对比度。可以采用多尺度Retinex(MSR)或单尺度Retinex(SSR)方法,其中MSR使用不同尺度的高斯滤波器估计光照分量,以获得更平滑的结果;接着对分离后的反射分量进行对比度拉伸或其他对比度增强处理,以提升图像视觉效果;最后将调整后的反射分量与原始光照分量重新组合,生成增强后的图像。如果存在“retinex.txt”文件,其中可能包含实现这些步骤的Matlab代码。通过阅读和理代码,可以学习如何在实际项目中应用Retinex算法,代码通常会涉及定义图像处理函数、调用Matlab内置图像处理工具箱函数以及设置参数以适应不同图像。 在研究和应用Retinex算法时,需要注意以下关键点:一是参数选择,算法性能依赖于高斯滤波器尺度、对比度拉伸范围等参数,需根据具体应用调整;二是运算复杂性,由于涉及多尺度处理,算法计算复杂度较高,在实时或资源受限环境中需优化或寻找高效实现方式;三是噪声处理,Retinex算法可能放大噪声较大的图像中的噪声,因此实际应用中可能需要结合去噪方法,如中值滤波或非局部均值滤波。通过深入理和应用Retinex算法,不
内容概要:本文详细介绍了Graylog这款开源日志管理平台的核心功能及其优势,涵盖日志收集、实时搜索分析、可视化展示和警报通知等方面。文章首先阐述了日志管理的重要性,接着对比了Graylog与ELK Stack、Splunk等工具的不同之处,突出了其开源免费、实时处理、易于扩展、界面友好和社区活跃等特点。随后,逐步讲了在Linux系统上安装Graylog的过程,包括Java环境、Elasticsearch、MongoDB以及Graylog服务器和Web界面的安装与配置。接着,描述了如何配置Graylog实现高效日志管理,如设置输入源、创建日志收集规则(Stream)和配置告警规则。最后,通过一个电商项目的实战案例展示了Graylog在实际运维中的应用,并总结了常见问题及决方法。 适合人群:从事IT运维工作的技术人员,尤其是负责日志管理和系统监控的工程师。 使用场景及目标:①帮助运维人员快速收集、筛选和分析海量的日志数据,迅速定位系统故障的根源;②通过直观的可视化展示和及时的告警通知,保障系统的稳定运行;③适用于微服务架构下的多服务日志管理,以及需要对日志进行深度分析和告警设置的场景。 阅读建议:Graylog是一款功能强大的日志管理工具,其安装配置和使用涉及多个组件和技术细节。建议读者在学习过程中,结合实际操作进行练习,尤其是在安装部署阶段,注意各组件之间的版本兼容性和资源配置。同时,充分利用Graylog提供的可视化和告警功能,提升日常运维效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值