N级台阶(比如100级),每次可走1步或者2步,求总共有多少种走法?

本文探讨了面试中常见的走台阶算法,即每次可以走1步、2步或3步,如何求解走完特定台阶的总方法数。通过分析问题本质,指出该问题是斐波那契数列的应用。文章提供了两种解决方案,一种是基于斐波那契数列的直接计算,另一种则是利用递归思想。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

走台阶算法(本质上是斐波那契数列)在面试中常会遇到,描述就如题目那样:总共100级台阶(任意级都行),小明每次可选择走1步、2步或者3步,问走完这100级台阶总共有多少种走法?


一、 题目分析

这个问题本质上是斐波那契数列,假设只有一个台阶,那么只有一种跳法,那就是一次跳一级,f(1)=1;如果有两个台阶,那么有两种跳法,第一种跳法是一次跳一级,第二种跳法是一次跳两级,f(2)=2。如果有大于2级的n级台阶,那么假如第一次跳一级台阶,剩下还有n-1级台阶,有f(n-1)种跳法,假如第一次条2级台阶,剩下n-2级台阶,有f(n-2)种跳法。这就表示f(n)=f(n-1)+f(n-2)。将上面的斐波那契数列代码稍微改一下就是本题的答案。我们来看一下代码的实现。


二、斐波那契数列法

public class Test {
    static final 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值