C++ 有向图的邻接表表示

本文介绍了使用C++实现有向图的邻接表表示,包括插入有向边、删除边和删除顶点的方法。在插入和删除边时,由于有向图的特性,只需操作单向边。删除顶点时,需同时处理以该顶点为起点和终点的边。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、思路:

       有向图的插入有向边、删除边、删除顶点和无向图的有区别。其他的和无向图的类似。

       1.插入有向边<e1, e2>

          只需要插入<e1, e2>边就行,不需要插入对称边<e2, e1>

       2.删除边<e1,e2>:

           只需要删除<e1, e2>边就行,不需要仔找对称边<e2, e1>进行删除。

      3.删除顶点v:

          首先,要在邻接表中删除以v为头的边<v, w>;

          同时,也要在邻接表中删除以v为尾的边<k, v>, 不能通过对称边来找,只能一个个顶点找,浪费时间。

 

二、实现程序:

    1.DirectedGraph.h:有向图

#ifndef DirectedGraph_h
#define DirectedGraph_h
#include <iostream>
using namespace std;

const int DefaultVertices = 30;

template <class T, class E>
struct Edge { // 边结点的定义
    int dest; // 边的另一顶点位置
    E cost; // 表上的权值
    Edge<T, E> *link; // 下一条边链指针
};

template <class T, class E>
struct Vertex { // 顶点的定义
    T data; // 顶点的名字
    Edge<T, E> *adj; // 边链表的头指针
};

template <class T, class E>
class Graphlnk {
public:
    const E maxValue = 100000; // 代表无穷大的值(=∞)
    Graphlnk(int sz=DefaultVertices); // 构造函数
    ~Graphlnk(); // 析构函数
    void inputGraph(); // 建立邻接表表示的图
    void outputGraph(); // 输出图中的所有顶点和边信息
    T getValue(int i); // 取位置为i的顶点中的值
    E getWeight(int v1, int v2); // 返回边(v1, v2)上的权值
    bool insertVertex(const T& vertex); // 插入顶点
    bool insertEdge(int v1, int v2, E weight); // 插入边
    bool removeVertex(int v); // 删除顶点
    bool removeEdge(int v1, int v2); // 删除边
    int getFirstNeighbor(int v); // 取顶点v的第一个邻接顶点
    int getNextNeighbor(int v,int w); // 取顶点v的邻接顶点w的下一邻接顶点
    int getVertexPos(const T vertex); // 给出顶点vertex在图中的位置
    int numberOfVertices(); // 当前顶点数
private:
    int maxVertices; // 图中最大的顶点数
    int numEdges; // 当前边数
    int numVertices; // 当前顶点数
    Vertex<T, E> * nodeTable; // 顶点表(各边链表的头结点)
};

// 构造函数:建立一个空的邻接表
template <class T, class E>
Graphlnk<T, E>::Graphlnk(int sz) {
    maxVertices = sz;
    numVertices = 0;
    numEdges = 0;
    nodeTable = new Vertex<T, E>[maxVertices]; // 创建顶点表数组
    if(nodeTable == NULL) {
        cerr << "存储空间分配错误!" << endl;
        exit(1);
    }
    for(int i = 0; i < maxVertices; i++)
        nodeTable[i].adj = NULL;
}

// 析构函数
template <class T, class E>
Graphlnk<T, E>::~Graphlnk() {
    // 删除各边链表中的结点
    for(int i = 0; i < numVertices; i++)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值