LSQR 算法

LSQR是一种共轭梯度类型的方法,用于求解大型稀疏线性方程组和最小二乘问题。它由Chris Paige和Michael Saunders开发,适用于过定、欠定及任意秩的矩阵。算法基于Golub-Kahan双对角化过程,对于病态矩阵具有良好的数值稳定性。

http://www.stanford.edu/group/SOL/software/lsqr.html

 

LSQR: Sparse Equations and Least Squares

  • AUTHORS: Chris PaigeMichael Saunders.
  • CONTRIBUTORS: James Howse, Michael Friedlander, John Tomlin, Miha Grcar, Jeffery Kline, Dominique Orban.
  • CONTENTS: Implementation of a conjugate-gradient type method for solving sparse linear equations and sparse least-squares problems:where the matrix  may be square or rectangular (over-determined or under-determined), and may have any rank. It is represented by a routine for computing  and  for given vectors  and .

    The scalar  is a damping parameter. If , the solution is "regularized" in the sense that a unique solution always exists, and  is bounded.

    The method is based on the Golub-Kahan bidiagonalization process. It is algebraically equivalent to applying MINRES to the normal equation but has better numerical properties, especially if  is ill-conditioned.

     

    NOTE: LSQR reduces  monotonically (where  if ). If you are likely to terminate iterations early, LSMR may be preferable because it reduces both  and  monotonically.

     

    If  is symmetric, it should be more efficient to use SYMMLQMINRES, or MINRES-QLP.

  • REFERENCES: 
    C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, TOMS 8(1), 43-71 (1982). 
    C. C. Paige and M. A. Saunders, Algorithm 583; LSQR: Sparse linear equations and least-squares problems, TOMS 8(2), 195-209 (1982).
  • RELEASE: 
    f77 and Matlab files are well tested. 
    C, f90, C++ versions are Beta. 
    Windows DLL and .NET (C#) versions are Beta.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值