【LeetCode】Best Time to Buy and Sell Stock & Best Time to Buy and Sell Stock

本文深入探讨了股票交易中的经典问题,包括一次交易的最大收益、不限次数交易的最大收益及最多两次交易的最大收益。通过算法分析,提供了求解这些问题的高效方法,并详细解释了关键步骤与实现逻辑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考链接

http://www.cnblogs.com/wdpp/archive/2011/12/28/2386704.html

http://hi.baidu.com/liu_a_meng/item/e2dbd8e4ac11a0c4baf37d4f

http://www.cnblogs.com/remlostime/archive/2012/11/06/2757434.html

II

题目描述

Best Time to Buy and Sell Stock

 

Say you have an array for which the ith element is the price of a given stock on day i.

If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.


题目分析

题意思,就是第i天的股票价格为array[i]。问最大利润,就是右边的数和它左边的数做差,求最大的一个差值
从最后一个数字开始 prices.size()-1.....i.......0 第i个数时最大差值就是max(i)=MAX(max(i+1),MAX(array[i+1],array[i+2].....)-array[i])

也就是已经求得的最优解i后面数字中最大数和当前值的差值的最大值。

总结


代码示例

class Solution {
public:
    int maxProfit(vector<int> &prices) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        if (prices.size() == 0)
            return 0;
            
        int maxPrice = prices[prices.size()-1];
        int ans = 0;
        for(int i = prices.size() - 1; i >= 0; i--)
        {
            maxPrice = max(maxPrice, prices[i]);
            ans = max(ans, maxPrice - prices[i]);
        }
        
        return ans;
    }
};

II

Best Time to Buy and Sell Stock II

  Total Accepted: 12370  Total Submissions: 34808 My Submissions

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times). However, you may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).



int maxProfit(vector<int> &prices) 
{
	if (prices.size() <= 1) return 0;
	int profit = 0;
	for (int i = 1; i < prices.size(); i++)
	{
		if (prices[i-1] < prices[i])
		{
			profit += prices[i] - prices[i-1];
		}
	}
	return profit;	        
}


Best Time to Buy and Sell Stock III

 

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

参考:



O(n^2)的算法很容易想到:

找寻一个点j,将原来的price[0..n-1]分割为price[0..j]和price[j..n-1],分别求两段的最大profit。

进行优化:

对于点j+1,求price[0..j+1]的最大profit时,很多工作是重复的,在求price[0..j]的最大profit中已经做过了。

类似于Best Time to Buy and Sell Stock,可以在O(1)的时间从price[0..j]推出price[0..j+1]的最大profit。

但是如何从price[j..n-1]推出price[j+1..n-1]?反过来思考,我们可以用O(1)的时间由price[j+1..n-1]推出price[j..n-1]。

最终算法:

数组l[i]记录了price[0..i]的最大profit,

数组r[i]记录了price[i..n]的最大profit。

已知l[i],求l[i+1]是简单的,同样已知r[i],求r[i-1]也很容易。

最后,我们再用O(n)的时间找出最大的l[i]+r[i],即为题目所求。




class Solution {
public:
    int maxProfit(vector<int> &prices) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        int profit = 0, n = prices.size();
        if (n == 0) {
            return 0;
        }
        int l[n], r[n];
        memset(l, 0, sizeof(int) * n);
        memset(r, 0, sizeof(int) * n);
        int min = prices[0];
        for (int i = 1; i < n; i++) {
            l[i] = prices[i] - min > l[i - 1] ? prices[i] - min : l[i - 1];        
            min = prices[i] < min ? prices[i] : min;
        }
        int max = prices[n - 1];
        for (int i = n - 2; i >= 0; i--) {
            r[i] = max - prices[i] > r[i + 1] ? max - prices[i] : r[i + 1];
            max = prices[i] > max ? prices[i] : max;
        }
        for (int i = 0; i < n; i++) {
            profit = l[i] + r[i] > profit ? l[i] + r[i] : profit;
        }
        return profit;      
    }
};



推荐学习C++的资料

C++标准函数库
在线C++API查询
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值