Using Event Objects

本文介绍了应用程序使用事件对象通知等待线程事件发生的情况,如重叠 I/O 操作。还给出示例,说明应用程序如何用事件对象防止多线程同时读写共享内存缓冲区,包括主线程和读取线程对事件对象状态的设置与等待操作。

Applications use event objects in a number of situations to notify a waiting thread of the occurrence of an event. For example, overlapped I/O operations on files, named pipes, and communications devices use an event object to signal their completion. For more information about the use of event objects in overlapped I/O operations, see Synchronization and Overlapped Input and Output.

In the following example, an application uses event objects to prevent several threads from reading from a shared memory buffer while a master thread is writing to that buffer. First, the master thread uses the CreateEvent function to create a manual-reset event object. The master thread sets the event object to nonsignaled when it is writing to the buffer and then resets the object to signaled when it has finished writing. Then it creates several reader threads and an auto-reset event object for each thread. Each reader thread sets its event object to signaled when it is not reading from the buffer.

#define NUMTHREADS 4 

HANDLE hGlobalWriteEvent; 

void CreateEventsAndThreads(void) 
{
    HANDLE hReadEvents[NUMTHREADS], hThread; 
    DWORD i, IDThread; 

    // Create a manual-reset event object. The master thread sets 
    // this to nonsignaled when it writes to the shared buffer. 

    hGlobalWriteEvent = CreateEvent( 
        NULL,         // no security attributes
        TRUE,         // manual-reset event
        TRUE,         // initial state is signaled
        "WriteEvent"  // object name
        ); 

    if (hGlobalWriteEvent == NULL) { 
        // error exit
    }

    // Create multiple threads and an auto-reset event object 
    // for each thread. Each thread sets its event object to 
    // signaled when it is not reading from the shared buffer. 

    for(i = 1; i <= NUMTHREADS; i++) 
    {
        // Create the auto-reset event.
        hReadEvents[i] = CreateEvent( 
            NULL,     // no security attributes
            FALSE,    // auto-reset event
            TRUE,     // initial state is signaled
            NULL);    // object not named

        if (hReadEvents[i] == NULL) 
        {
            // Error exit.
        }

        hThread = CreateThread(NULL, 0, 
            (LPTHREAD_START_ROUTINE) ThreadFunction, 
            &hReadEvents[i],  // pass event handle
            0, &IDThread); 
        if (hThread == NULL) 
        {
            // Error exit.
        }
    }
}

Before the master thread writes to the shared buffer, it uses the ResetEvent function to set the state of hGlobalWriteEvent (an application-defined global variable) to nonsignaled. This blocks the reader threads from starting a read operation. The master then uses the WaitForMultipleObjects function to wait for all reader threads to finish any current read operations. When WaitForMultipleObjects returns, the master thread can safely write to the buffer. After it has finished, it sets hGlobalWriteEvent and all the reader-thread events to signaled, enabling the reader threads to resume their read operations.

VOID WriteToBuffer(VOID) 
{
    DWORD dwWaitResult, i; 

    // Reset hGlobalWriteEvent to nonsignaled, to block readers.
 
    if (! ResetEvent(hGlobalWriteEvent) ) 
    { 
        // Error exit.
    } 

    // Wait for all reading threads to finish reading.

    dwWaitResult = WaitForMultipleObjects( 
        NUMTHREADS,   // number of handles in array
        hReadEvents,  // array of read-event handles
        TRUE,         // wait until all are signaled
        INFINITE);    // indefinite wait

    switch (dwWaitResult) 
    {
        // All read-event objects were signaled.
        case WAIT_OBJECT_0: 
            // Write to the shared buffer.
            break;

        // An error occurred.
        default: 
            printf("Wait error: %d/n", GetLastError()); 
            ExitProcess(0); 
    } 

    // Set hGlobalWriteEvent to signaled.

    if (! SetEvent(hGlobalWriteEvent) ) 
    {
        // Error exit.
    }

    // Set all read events to signaled.
    for(i = 1; i <= NUMTHREADS; i++) 
        if (! SetEvent(hReadEvents[i]) ) { 
            // Error exit.
        } 
}

Before starting a read operation, each reader thread uses WaitForMultipleObjects to wait for the application-defined global variable hGlobalWriteEvent and its own read event to be signaled. When WaitForMultipleObjects returns, the reader thread's auto-reset event has been reset to nonsignaled. This blocks the master thread from writing to the buffer until the reader thread uses the SetEvent function to set the event's state back to signaled.

VOID ThreadFunction(LPVOID lpParam) 
{
    DWORD dwWaitResult;
    HANDLE hEvents[2]; 

    hEvents[0] = *(HANDLE*)lpParam;  // thread's read event
    hEvents[1] = hGlobalWriteEvent; 

    dwWaitResult = WaitForMultipleObjects( 
        2,            // number of handles in array
        hEvents,      // array of event handles
        TRUE,         // wait till all are signaled
        INFINITE);    // indefinite wait

    switch (dwWaitResult) 
    {

        // Both event objects were signaled.
        case WAIT_OBJECT_0: 
            // Read from the shared buffer.
            break; 

        // An error occurred.
        default: 
            printf("Wait error: %d/n", GetLastError()); 
            ExitThread(0); 
    }

    // Set the read event to signaled.

    if (! SetEvent(hEvents[0]) ) 
    { 
        // Error exit.
    } 
}
下载方式:https://pan.quark.cn/s/a4b39357ea24 布线问题(分支限界算法)是计算机科学和电子工程领域中一个广为人知的议题,它主要探讨如何在印刷电路板上定位两个节点间最短的连接路径。 在这一议题中,电路板被构建为一个包含 n×m 个方格的矩阵,每个方格能够被界定为可通行或不可通行,其核心任务是定位从初始点到最终点的最短路径。 分支限界算法是处理布线问题的一种常用策略。 该算法与回溯法有相似之处,但存在差异,分支限界法仅需获取满足约束条件的一个最优路径,并按照广度优先或最小成本优先的原则来探索解空间树。 树 T 被构建为子集树或排列树,在探索过程中,每个节点仅被赋予一次成为扩展节点的机会,且会一次性生成其全部子节点。 针对布线问题的解决,队列式分支限界法可以被采用。 从起始位置 a 出发,将其设定为首个扩展节点,并将与该扩展节点相邻且可通行的方格加入至活跃节点队列中,将这些方格标记为 1,即从起始方格 a 到这些方格的距离为 1。 随后,从活跃节点队列中提取队首节点作为下一个扩展节点,并将与当前扩展节点相邻且未标记的方格标记为 2,随后将这些方格存入活跃节点队列。 这一过程将持续进行,直至算法探测到目标方格 b 或活跃节点队列为空。 在实现上述算法时,必须定义一个类 Position 来表征电路板上方格的位置,其成员 row 和 col 分别指示方格所在的行和列。 在方格位置上,布线能够沿右、下、左、上四个方向展开。 这四个方向的移动分别被记为 0、1、2、3。 下述表格中,offset[i].row 和 offset[i].col(i=0,1,2,3)分别提供了沿这四个方向前进 1 步相对于当前方格的相对位移。 在 Java 编程语言中,可以使用二维数组...
源码来自:https://pan.quark.cn/s/a4b39357ea24 在VC++开发过程中,对话框(CDialog)作为典型的用户界面组件,承担着与用户进行信息交互的重要角色。 在VS2008SP1的开发环境中,常常需要满足为对话框配置个性化背景图片的需求,以此来优化用户的操作体验。 本案例将系统性地阐述在CDialog框架下如何达成这一功能。 首先,需要在资源设计工具中构建一个新的对话框资源。 具体操作是在Visual Studio平台中,进入资源视图(Resource View)界面,定位到对话框(Dialog)分支,通过右键选择“插入对话框”(Insert Dialog)选项。 完成对话框内控件的布局设计后,对对话框资源进行保存。 随后,将着手进行背景图片的载入工作。 通常有两种主要的技术路径:1. **运用位图控件(CStatic)**:在对话框界面中嵌入一个CStatic控件,并将其属性设置为BST_OWNERDRAW,从而具备自主控制绘制过程的权限。 在对话框的类定义中,需要重写OnPaint()函数,负责调用图片资源并借助CDC对象将其渲染到对话框表面。 此外,必须合理处理WM_CTLCOLORSTATIC消息,确保背景图片的展示不会受到其他界面元素的干扰。 ```cppvoid CMyDialog::OnPaint(){ CPaintDC dc(this); // 生成设备上下文对象 CBitmap bitmap; bitmap.LoadBitmap(IDC_BITMAP_BACKGROUND); // 获取背景图片资源 CDC memDC; memDC.CreateCompatibleDC(&dc); CBitmap* pOldBitmap = m...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值