The Child and Toy
On Children's Day, the child got a toy from Delayyy as a present. However, the child is so naughty that he can't wait to destroy the toy.
The toy consists of n parts and m ropes. Each rope links two parts, but every pair of parts is linked by at most one rope. To split the toy, the child must remove all its parts. The child can remove a single part at a time, and each remove consume an energy. Let's define an energy value of part i as vi. The child spend vf1 + vf2 + ... + vfk energy for removing part i where f1, f2, ..., fk are the parts that are directly connected to the i-th and haven't been removed.
Help the child to find out, what is the minimum total energy he should spend to remove all n parts.
Input
The first line contains two integers n and m (1 ≤ n ≤ 1000; 0 ≤ m ≤ 2000). The second line contains n integers: v1, v2, ..., vn (0 ≤ vi ≤ 105). Then followed m lines, each line contains two integers xi and yi, representing a rope from part xi to part yi (1 ≤ xi, yi ≤ n; xi ≠ yi).
Consider all the parts are numbered from 1 to n.
Output
Output the minimum total energy the child should spend to remove all n parts of the toy.
Examples
Input
4 3 10 20 30 40 1 4 1 2 2 3
Output
40
Input
4 4 100 100 100 100 1 2 2 3 2 4 3 4
Output
400
Input
7 10 40 10 20 10 20 80 40 1 5 4 7 4 5 5 2 5 7 6 4 1 6 1 3 4 3 1 4
Output
160
Note
One of the optimal sequence of actions in the first sample is:
- First, remove part 3, cost of the action is 20.
- Then, remove part 2, cost of the action is 10.
- Next, remove part 4, cost of the action is 10.
- At last, remove part 1, cost of the action is 0.
So the total energy the child paid is 20 + 10 + 10 + 0 = 40, which is the minimum.
In the second sample, the child will spend 400 no matter in what order he will remove the parts.
题目链接:http://codeforces.com/problemset/problem/437/C
题目大意:n个点m条边,每个点有一个点权,现在要把这n个点拆开,拆下一个节点要消耗的能量是 现在剩下的点中与要拆节点相连的所有节点的权值之和。问把这个图拆成单独的n个节点的最小消耗
思路:要把图拆开一共要拆下n-1个节点,每次拆除当前剩余节点中权值最大的点,能保证最后消耗的能量最少
代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
#define ll long long
const int N=2005;
int first[N],vis[N],w[N];
int n,m,tot;
struct nod
{
int id,w;
}a[N];
struct node
{
int v,nex;
}e[N<<1];
void init()
{
tot=0;
memset(first,-1,sizeof(first));
memset(vis,0,sizeof(vis));
}
void adde(int u,int v)
{
e[tot].v=v;
e[tot].nex=first[u];
first[u]=tot++;
}
bool cmp(nod x,nod y)
{
return x.w>y.w;
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
init();
for(int i=0;i<n;i++)
{
a[i].id=i+1;
scanf("%d",&a[i].w);
w[i+1]=a[i].w;
}
int u,v;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
adde(u,v);
adde(v,u);
}
sort(a,a+n,cmp);
int ans=0;
for(int i=0;i<n-1;i++)
{
u=a[i].id;
vis[u]=1;
for(int j=first[u];~j;j=e[j].nex)
{
v=e[j].v;
if(!vis[v]) //如果这个点还没被拆下
ans+=w[v];
}
}
printf("%d\n",ans);
}
return 0;
}