窦猛汉《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000
1.进程切换函数
schedule函数为调度函数,用以选择切换进程,其主要调用的函数有 pick_next_task,context_switch,在context_switch中调用switch_to (1)schedule
static void __sched __schedule(void)
{
struct task_struct *prev, *next;
unsigned long *switch_count;
struct rq *rq; int cpu;
need_resched:
preempt_disable();
cpu = smp_processor_id();
rq = cpu_rq(cpu);
rcu_note_context_switch(cpu);
prev = rq->curr;
schedule_debug(prev);
if (sched_feat(HRTICK))
hrtick_clear(rq);
smp_mb__before_spinlock();
raw_spin_lock_irq(&rq->lock);
switch_count = &prev->nivcsw;
if (prev->state && !(preempt_count() & PREEMPT_ACTIVE))
{
if (unlikely(signal_pending_state(prev->state, prev)))
{
prev->state = TASK_RUNNING;
}
else
{
deactivate_task(rq, prev, DEQUEUE_SLEEP);
prev->on_rq = 0;
if (prev->flags & PF_WQ_WORKER)
{
struct task_struct *to_wakeup;
to_wakeup = wq_worker_sleeping(prev, cpu);
if (to_wakeup)
try_to_wake_up_local(to_wakeup);
}
}
switch_count = &prev->nvcsw;
}
if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
update_rq_clock(rq);
next = pick_next_task(rq, prev);
clear_tsk_need_resched(prev);
clear_preempt_need_resched();
rq->skip_clock_update = 0;
if (likely(prev != next)) {
rq->nr_switches++;
rq->curr = next;
++*switch_count;
context_switch(rq, prev, next); /* unlocks the rq */
cpu = smp_processor_id();
rq = cpu_rq(cpu);
}
else
raw_spin_unlock_irq(&rq->lock);
post_schedule(rq);
sched_preempt_enable_no_resched();
if (need_resched())
goto need_resched;
}
(2) pick_next_task //进程调度算法都封装这个函数内部
static inline struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev)
{
const struct sched_class *class = &fair_sched_class;
struct task_struct *p;
if (likely(prev->sched_class == class &&
rq->nr_running == rq->cfs.h_nr_running))
{
p = fair_sched_class.pick_next_task(rq, prev);
if (unlikely(p == RETRY_TASK))
goto again; /* assumes fair_sched_class->next == idle_sched_class */
if (unlikely(!p))
p = idle_sched_class.pick_next_task(rq, prev);
return p;
}
again:
for_each_class(class) {
p = class->pick_next_task(rq, prev);
if (p)
{
if (unlikely(p == RETRY_TASK))
goto again;
return p;
}
}
BUG();
}
(3)context_switch//进程上下文切换
context_switch(struct rq *rq, struct task_struct *prev,
struct task_struct *next)
{
struct mm_struct *mm, *oldmm;
prepare_task_switch(rq, prev, next);
mm = next->mm;
oldmm = prev->active_mm;
arch_start_context_switch(prev);
if (!mm)
{
next->active_mm = oldmm;
atomic_inc(&oldmm->mm_count);
enter_lazy_tlb(oldmm, next);
}
else
switch_mm(oldmm, mm, next);
if (!prev->mm)
{
prev->active_mm = NULL;
rq->prev_mm = oldmm;
}
spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
context_tracking_task_switch(prev, next);
switch_to(prev, next, prev);
barrier();
finish_task_switch(this_rq(), prev);
}
(4)switch_to//利用了prev和next两个参数:prev指向当前进程,next指向被调度的进程,switch_to内部是汇编代码,用以切换进程
#define switch_to(prev, next, last) do {
unsigned long ebx, ecx, edx, esi, edi;
asm volatile("pushfl\n\t" /* 保存当前进程的flags */
"pushl %%ebp\n\t" /* 把当前进程的当前的ebp压入当前进程的栈 */
"movl %%esp,%[prev_sp]\n\t" /*保存当前的esp到prev->thread.sp指向的内存中 */
"movl %[next_sp],%%esp\n\t" /* 重置esp,把下个进程的next->thread.sp赋予esp */
"movl $1f,%[prev_ip]\n\t" /*把1:的代码在内存中存储的地址保存到prev->thread.ip中*/
"pushl %[next_ip]\n\t" /*重置eip */
__switch_canary
"jmp __switch_to\n"
"1:\t"
"popl %%ebp\n\t" /* 重置ebp */
"popfl\n" /* 重置flags*/
: [prev_sp] "=m" (prev->thread.sp),
[prev_ip] "=m" (prev->thread.ip),
"=a" (last),
"=b" (ebx), "=c" (ecx), "=d" (edx),
"=S" (esi), "=D" (edi)
__switch_canary_oparam
: [next_sp] "m" (next->thread.sp),
[next_ip] "m" (next->thread.ip),
[prev] "a" (prev),
[next] "d" (next)
__switch_canary_iparam
"memory");
} while (0)
进程调度时机
1、中断处理过程(包括时钟中断、I/O中断、系统调用和异常)中,直接调用schedule(),或者返回用户态时根据need_resched标记调用schedule();
2、内核线程可以直接调用schedule()进行进程切换,也可以在中断处理过程中进行调度,也就是说内核线程作为一类的特殊的进程可以主动调度,也可以被动调度;
3、用户态进程无法实现主动调度,仅能通过陷入内核态后的某个时机点进行调度,即在中断处理过程中进行调度。 进程切换:为了控制进程的执行,内核必须有能力挂起正在CPU上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换(process switch)、任务切换(task switch)或上下文切换(context switch)。 挂起正在CPU上执行的进程,与中断时保存现场是不同的,中断前后是在同一个进程上下文中,只是由用户态转向内核态执行。
进程上下文包含了进程执行需要的所有信息,包括: 1、用户地址空间:包括程序代码,数据,用户堆栈等
2、控制信息:进程描述符,内核堆栈等
3、硬件上下文(与中断保存硬件上下文的方法不同)
gdb跟踪schedule


Linux系统的一般执行过程
最一般情况:正在运行的用户态进程X切换到运行用户态进程Y的过程
1.正在运行的用户态进程X
2.发生中断——save cs:eip/esp/eflags(current) to kernel stack,then load cs:eip(entry of a specific ISR) and ss:esp(point to kernel stack).
SAVE_ALL //保存现场
中断处理过程中或中断返回前调用了schedule(),其中的switch_to做了关键的进程上下文切换
标号1之后开始运行用户态进程Y(这里Y曾经通过以上步骤被切换出去过因此可以从标号1继续执行)
restore_all //恢复现场
iret - pop cs:eip/ss:esp/eflags from kernel stack
继续运行用户态进程Y
几种特殊的情况:
通过中断处理过程中的调度时机,用户态进程与内核线程之间互相切换和内核线程之间互相切换,与最一般的情况非常类似,只是内核线程运行过程中发生中断没有进程用户态和内核态的转换;
内核线程主动调用schedule(),只有进程上下文的切换,没有发生中断上下文的切换,与最一般的情况略简略;
创建子进程的系统调用在子进程中的执行起点及返回用户态,如fork;
加载一个新的可执行程序后返回到用户态的情况,如execve;
本文详细剖析了Linux系统中的进程调度机制,包括schedule函数、pick_next_task函数、context_switch函数和switch_to函数的工作原理,以及进程上下文切换的具体过程。
3134

被折叠的 条评论
为什么被折叠?



