画底图mask.gs程序的使用

GRADS绘制教程
本文详细介绍如何使用GRADS软件进行底图的绘制与设置,包括创建mask图片、编辑maskarea.ctl文件、准备二进制数据及其描述文件,并最终实现底图与目标数据的结合展示。

1.打开grads,输入命令d:/mask.gs,产生mask图片,使用点选功能将所要绘制的底图点击出来,然后点击quit,自动产生maskarea.dat二进制文件;

2.对maskarea.dat用ctl文件描述maskarea.ctl:

  DSET D:/maskarea.dat
UNDEF  -999.0
TITLE CPC Soil Moisture
XDEF 127 LINEAR 72.75 0.5
YDEF 75  LINEAR 16.75 0.5
ZDEF  1 LEVELS  1
TDEF 1 LINEAR Jan1948 1mon
VARS 1
mask   0   99   W (mm)
ENDVARS

3.准备好与之对应的所要绘制对象的二进制数据:w.194801_200902.grd及描述文件w.194801_200902.ctl;

4.输入命令:

 open  d:/maskarea.ctl 

*打开绘制底图文件    

 d mask  

*显示绘制底图框架

open d:/w.194801_200902.ctl

*打开要绘制对象的描述文件

d maskout(w.2,mask)

*底图mask数据放在后,绘制对象数据w放在前,2表示第二个文件中的w,不能颠倒顺序

@tf.function def train_step(inp_SNR, noise, GS_flag, PS_flag, eq_flag, epsilon=1e-12, min_distance_threshold=0.5): loss = 0 with tf.GradientTape() as tape: # 原始前向传播计算 s_logits = logit_model(inp_SNR) # batch_size = tf.shape(inp_SNR)[0] # s_logits = tf.zeros((batch_size, M), dtype=tf.float32) s = s_model(s_logits) soft_bits = soft_bit_encoder(s) hard_bits = hard_decision_on_bit(soft_bits) enc = Trans_model_bit(hard_bits) # 生成完整星座图 bit_set = tf.math.mod(tf.bitwise.right_shift(tf.expand_dims(symbol_set, 1), tf.range(bitlen)), 2) bit_set = tf.reverse(bit_set, axis=[-1]) constellation = Trans_model_bit(bit_set) constellation = tf.expand_dims(constellation, 0) # 归一化处理 p_s = tf.nn.softmax(s_logits) magnitudes = tf.abs(constellation) max_mag = tf.reduce_max(magnitudes) norm_factor = 1.30793 / tf.maximum(max_mag, epsilon) norm_constellation = r2c(norm_factor) * constellation x = r2c(norm_factor) * enc # === 星座点最小距离约束 === points = tf.squeeze(tf.stack([tf.math.real(norm_constellation), tf.math.imag(norm_constellation)], axis=-1)) diff = tf.expand_dims(points, 1) - tf.expand_dims(points, 0) # [M, M, 2] distances = tf.norm(diff, axis=-1) # [M, M] mask = tf.eye(tf.shape(distances)[0], dtype=tf.bool) valid_distances = tf.where(mask, tf.ones_like(distances)*1e10, distances) min_distance = tf.reduce_min(valid_distances) distance_penalty = tf.nn.relu(min_distance_threshold - min_distance) * 50.0 # === 新增:概率分布可逆性约束 === # 1. 计算初始均匀分布的熵(基准值) num_constellation_points = tf.cast(tf.shape(constellation)[1], tf.float32) # 使用换底公式计算log2: log2(x) = ln(x)/ln(2) uniform_entropy = tf.math.log(num_constellation_points) / tf.math.log(2.0) # 均匀分布的熵 # 2. 计算当前分布的熵 current_entropy = -tf.reduce_sum(p_s * tf.math.log(p_s) / tf.math.log(2.0)) # 以2为底的熵 # 3. 熵约束惩罚 entropy_ratio = current_entropy / uniform_entropy entropy_penalty = tf.nn.relu(0.9 - entropy_ratio) * 200.0 # 4. 概率下限约束 min_prob = tf.reduce_min(p_s) prob_floor_penalty = tf.nn.relu(epsilon - min_prob) * 200.0 # === 原始损失计算 === Tx = upsample_pulse_shaping(x, Fs, h_rrc, fa, fc) Rx = Tx + noise y = Model_Eq(Rx) entropy_S = -p_norm(p_s, p_s, lambda x: log2(x)) GMI = GMIcal_tf(x, tf.squeeze(y), M, norm_constellation, hard_bits_out, p_s) NGMI = 1 - (entropy_S - GMI) / bitlen loss_NGMI = tf.nn.relu(NGMI_th - NGMI) loss_Eq = tf.reduce_mean(tf.square(tf.abs(x - y))) # === 修改后的损失函数(添加所有惩罚项) === loss = (loss_Eq * eq_flag * 0.5 - GMI + loss_NGMI * 100 + distance_penalty + entropy_penalty # 新增:熵约束惩罚 + prob_floor_penalty) # 新增:概率下限惩罚 # # 梯度计算与更新 # variables = [] # if PS_flag == 1: # variables.extend(logit_model.trainable_variables) # variables.extend(s_model.trainable_variables) # if GS_flag == 1: # variables.extend(Trans_model_bit.trainable_variables) # if eq_flag == 1: # variables.extend(Model_Eq.trainable_variables) variables = (logit_model.trainable_variables * PS_flag + s_model.trainable_variables + Trans_model_bit.trainable_variables * GS_flag + Model_Eq.trainable_variables * eq_flag) gradients = tape.gradient(loss, variables) optimizer.apply_gradients(zip(gradients, variables)) # 保持原始返回值结构不变 return loss, loss_Eq, NGMI, GMI, tf.reduce_mean(entropy_S), p_s, norm_constellation, x, min_distance 新增约束条件,一个点与其相邻三个点的概率和不能超过4/M。当前代码可以正常运行,修改时只修改必要地方
最新发布
08-22
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值