329. 矩阵中的最长递增路径

本文介绍了一种解决矩阵中最长递增路径问题的方法,通过将矩阵视为有向图,利用深度优先搜索算法求解最长路径。适用于算法设计与分析、数据结构与算法优化等领域。

题目
在这里插入图片描述
参考思路:
将矩阵看成一个有向图,每个单元格对应图中的一个节点,如果相邻的两个单元格的值不相等,则在相邻的两个单元格之间存在一条从较小值指向较大值的有向边。问题转化成在有向图中寻找最长路径。

class Solution {
public:
    static constexpr int dirs[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
    int rows, columns;

    int longestIncreasingPath(vector< vector<int> > &matrix) {
        if (matrix.size() == 0 || matrix[0].size() == 0) {
            return 0;
        }
        rows = matrix.size();
        columns = matrix[0].size();
        auto memo = vector< vector<int> > (rows, vector <int> (columns));
        int ans = 0;
        for (int i = 0; i < rows; ++i) {
            for (int j = 0; j < columns; ++j) {
                ans = max(ans, dfs(matrix, i, j, memo));
            }
        }
        return ans;
    }

    int dfs(vector< vector<int> > &matrix, int row, int column, vector< vector<int> > &memo) {
        if (memo[row][column] != 0) {
            return memo[row][column];
        }
        ++memo[row][column];
        for (int i = 0; i < 4; ++i) {
            int newRow = row + dirs[i][0], newColumn = column + dirs[i][1];
            if (newRow >= 0 && newRow < rows && newColumn >= 0 && newColumn < columns && matrix[newRow][newColumn] > matrix[row][column]) {
                memo[row][column] = max(memo[row][column], dfs(matrix, newRow, newColumn, memo) + 1);
            }
        }
        return memo[row][column];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值