Deep Learning for NLP 文章列举 | 持之以恒

本文综述了深度学习在自然语言处理领域的应用,涵盖了词嵌入学习、语义提取、文档表示、情感分析等关键技术。引用了多篇重要论文,如Word Representations、Deep Neural Network with Multitask Learning等,探讨了神经网络架构、多任务学习、语义解析等前沿研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

慢慢补充
大部分文章来自:
包括从他们里面的论文里找到的related work
Word Embedding Learnig
Antoine Bordes, et al. 【AAAI'11】Learning Structured Embeddings of Knowledge Bases
our model learns one embedding for each entity (i.e. one low dimensional vector) and one operator for each relation (i.e. a matrix).
Ronan Collobert, et al.【JMLR'12】Natural Language Processing (Almost) from Scratch
待读列表:
Semi-supervised learning of compact document representations with deep networks
【UAI'13】Modeling Documents with a Deep Boltzmann Machine
Language Model
博士论文:Statistical Language Models based on Neural Networks 这人貌似在ICASSP上有个文章
Sentiment
other NLP 以下内容见socher主页
Parsing with Compositional Vector Grammars
Better Word Representations with Recursive Neural Networks for Morphology
Semantic Compositionality through Recursive Matrix-Vector Spaces
Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection
Parsing Natural Scenes and Natural Language with Recursive Neural Networks
Learning Continuous Phrase Representations and Syntactic Parsing with Recursive Neural Networks
Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing
Tutorials
Ronan Collobert and Jason Weston【NIPS'09】Deep Learning for Natural Language Processing
Richard Socher, et al.【NAACL'13】【ACL'12】Deep Learning for NLP
Yoshua Bengio【ICML'12】Representation Learning
L eon Bottou, Natural language processing and weak supervision
Yoshua Bengio最新AAAI 2013 tutorial:http://www.iro.umontreal.ca/~bengioy/talks/aaai2013-tutorial.pdf
Socher NAACL 2013:http://nlp.stanford.edu/courses/NAACL2013/

原文地址:http://www.xperseverance.net/blogs/2013/07/2124/

转载于:https://my.oschina.net/CaptainA/blog/1483785

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值