2、机器学习简介及其分类

本文介绍了机器学习的基本概念,包括监督学习、无监督学习和强化学习的定义和常见算法。同时,从不同角度对机器学习进行了分类,如按照学习方式、模型结构、样本数量等,阐述了各类模型的特点和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

机器学习是指让机器从数据中自动学习规律和知识,并利用这些规律和知识进行预测或决策的技术,机器学习包括监督学习、无监督学习、强化学习,其中监督学习也被称作有监督的学习,有监督的意思就是预先知道据有什么样的目标,通过一些已经知道结果的数据(也叫做有标注的数据)训练模型,完成训练后,再将新问题给模型去解答,常用的有监督的算法有KNN(K近邻)算法、线性回归、罗辑回归、支持向量机、决策树、神经网络等;无监督学习就是用没有标注的数据进行模型训练,从没有标注的数据中找隐藏的特征,这其中无需人工干预,该类算法可以发现信息的相似性和差异性,一些比较重要无监督学习算法包含了k-means算法、分层聚类算法、最大期望算法(EM)等的聚类算法,主成分分析(PCA)、核主成分分析、局部线性嵌入等降纬算法以及先验算法(Apriori)频繁项集挖掘(Eclat)等关联规则学习算法;强化学习是就是再联系的学习交互中不断的学习更优的方法,从而制定最佳的策略,其中包含了策略优化、Q-learning等。
自从AI被证实提出后,人工智能就开始逐渐走进人们的视野,当时对人工智能的理解还很肤浅,随着很多科幻电影和小说不断的对人工智能的描述,才使得人们逐渐认识到了人工智能的应用未来会是一个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

质问

开心就好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值