2021-05-07

第一步:

点击文件:新建画板(采用web画板)

   

第二步:点击窗口回跳出选项栏点击时间轴

第三步:假如我要设置三个图层来进行时间轴展示,就建立三个图层

  

第四步:拖入三个形状,分别进入(1.2.3)图层进行形状隐藏,进入第一个图层就显示形状1(其余的关掉)第二个图层显示形状1副本(其余的关掉)第三个图层显示形状1副本2(其余的关掉)

    

第五步就点击播放

内容概要:本文介绍了一种基于蒙特卡洛模拟和拉格朗日优化方法的电动汽车充电站有序充电调度策略,重点针对分时电价机制下的分散式优化问题。通过Matlab代码实现,构建了考虑用户充电需求、电网负荷平衡及电价波动的数学模【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)型,采用拉格朗日乘子法处理约束条件,结合蒙特卡洛方法模拟大量电动汽车的随机充电行为,实现对充电功率和时间的优化分配,旨在降低用户充电成本、平抑电网峰谷差并提升充电站运营效率。该方法体现了智能优化算法在电力系统调度中的实际应用价值。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源汽车、智能电网相关领域的工程技术人员。; 使用场景及目标:①研究电动汽车有序充电调度策略的设计与仿真;②学习蒙特卡洛模拟与拉格朗日优化在能源系统中的联合应用;③掌握基于分时电价的需求响应优化建模方法;④为微电网、充电站运营管理提供技术支持和决策参考。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建、约束条件处理及优化求解过程,可尝试调整参数设置以观察不同场景下的调度效果,进一步拓展至多目标优化或多类型负荷协调调度的研究。
你已经成功将 `Date` 列转换为 `datetime64[ns]` 类型,并且输出如下: ``` 0 2021-01-04 1 2021-01-05 2 2021-01-06 3 2021-01-07 4 2021-01-08 Name: Date, dtype: datetime64[ns] ``` ✅ **这说明日期解析完全正确!** 接下来你应该执行: ```python df.set_index('Date', inplace=True) df.sort_index(inplace=True) # 确保时间顺序正确 ``` 然后进入主逻辑,使用我们之前修复过的区间筛选函数(作用于索引)即可正常运行。 --- ### ✅ 当前状态确认清单 | 检查项 | 是否完成 | 说明 | |--------|----------|------| | ✔️ `Date` 列是否为 `datetime64[ns]`? | ✅ 是 | 输出已验证 | | ✔️ 是否设置为索引? | ⚠️ 需手动执行 | 必须调用 `set_index` | | ✔️ 时间是否升序排列? | ⚠️ 建议排序 | 使用 `sort_index()` 更安全 | | ✔️ 区间过滤函数是否作用于 `index`? | ✅ 是 | 否则会出错 | --- ### ✅ 推荐后续代码(确保流程完整) ```python # 设置索引并排序 df.set_index('Date', inplace=True) df.sort_index(inplace=True) # 查看数据类型和前几行 print("Index dtype:", df.index.dtype) print("Data head:") print(df.head()) ``` 此时你的 `df.index` 是一个有序的 `DatetimeIndex`,可以安全用于以下操作: ```python intervals = { 'YTD': lambda idx: idx >= pd.Timestamp(year=idx[-1].year, month=1, day=1), '1Y': lambda idx: idx >= idx[-1] - pd.DateOffset(years=1), '6M': lambda idx: idx >= idx[-1] - pd.DateOffset(months=6), '3M': lambda idx: idx >= idx[-1] - pd.DateOffset(months=3), '1M': lambda idx: idx >= idx[-1] - pd.DateOffset(months=1), } ``` 因为 `idx[-1]` 就是最后一个交易日,比如 `2024-03-28`,它是一个 `pd.Timestamp`,支持 `.year`、`.month` 等属性,不会再报错! --- ### ✅ 示例:查看当前 YTD 起始日 你可以加一段调试代码来验证逻辑是否正确: ```python # 调试:打印各个区间的起始时间(以最后一个日期为基准) last_date = df.index[-1] print(f"最新交易日: {last_date}") print("各区间起始日:") print("YTD:", pd.Timestamp(year=last_date.year, month=1, day=1)) print("1Y: ", last_date - pd.DateOffset(years=1)) print("6M: ", last_date - pd.DateOffset(months=6)) print("3M: ", last_date - pd.DateOffset(months=3)) print("1M: ", last_date - pd.DateOffset(months=1)) ``` 输出示例: ``` 最新交易日: 2024-03-28 各区间起始日: YTD: 2024-01-01 1Y: 2023-03-28 6M: 2023-09-28 3M: 2024-01-28 1M: 2024-02-28 ``` 这些日期就是每个区间的“开始日”,之后用它们做布尔索引就能提取对应时间段的数据。 --- ### ✅ 总结:你现在可以继续了! 只要你完成了以下几步: 1. ✅ 成功将 `Date` 转为 `datetime64[ns]` 2. ✅ 执行了 `df.set_index('Date')` 和 `sort_index()` 3. ✅ 使用基于 `idx`(即 DatetimeIndex)的过滤函数 那么之前的两个错误(`float64 has no attribute year` 和 `>= not supported`)都已彻底解决,现在可以放心运行完整的绩效分析代码。 --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值