NS2无线trace格式(旧trace)

转自:http://www.cs.binghamton.edu/~kliu/research/ns2code/index.html

To find the interpretation of all possible trace format when you do the wireless simulation, you'd better read the code of ns2 in filens2home/trace/cmu-trace{.h, .cc} Mostly, the format would be as

ACTION:	[s|r|D]: s -- sent, r -- received, D -- dropped
WHEN:	the time when the action happened
WHERE:	the node where the action happened
LAYER:	AGT -- application, 
	RTR -- routing, 
	LL  -- link layer (ARP is done here)
	IFQ -- outgoing packet queue (between link and mac layer)
	MAC -- mac, 
	PHY -- physical
flags:
SEQNO:	the sequence number of the packet
TYPE:	the packet type
		cbr -- CBR data stream packet
		DSR -- DSR routing packet (control packet generated by routing)
		RTS -- RTS packet generated by MAC 802.11
		ARP -- link layer ARP packet
SIZE:	the size of packet at current layer, when packet goes down, size increases, goes up size decreases
[a b c d]:	a -- the packet duration in mac layer header
		b -- the mac address of destination
		c -- the mac address of source
		d -- the mac type of the packet body
flags:
[......]:	[
		source node ip : port_number
		destination node ip (-1 means broadcast) : port_number
		ip header ttl 
		ip of next hop (0 means node 0 or broadcast)
		]

So we can interpret the below trace
s 76.000000000 _98_ AGT  --- 1812 cbr 32 [0 0 0 0] ------- [98:0 0:0 32 0]
as  Application 0 (port number) on node 98 sent a CBR packet whose ID is 1812 and size is 32 bytes, at time 76.0 second, to application 0 on node 0 with TTL is 32 hops. The next hop is not decided yet. 

And we can also interpret the below trace
r 0.010176954 _9_ RTR  --- 1 gpsr 29 [0 ffffffff 8 800] ------- [8:255 -1:255 32 0]
in the same way, as  The routing agent on node 9 received a GPSR broadcast (mac address 0xff, and ip address is -1, either of them means broadcast) routing packet whose ID is 1 and size is 19 bytes, at time 0.010176954 second, from node 8 (both mac and ip addresses are 8), port 255 (routing agent).
在IT领域,尤其是地理信息系统(GIS)中,坐标转换是一项关键技术。本文将深入探讨百度坐标系、火星坐标系和WGS84坐标系之间的相互转换,并介绍如何使用相关工具进行批量转换。 首先,我们需要了解这三种坐标系的基本概念。WGS84坐标系,即“World Geodetic System 1984”,是一种全球通用的地球坐标系统,广泛应用于GPS定位和地图服务。它以地球椭球模型为基础,以地球质心为原点,是国际航空和航海的主要参考坐标系。百度坐标系(BD-09)是百度地图使用的坐标系。为了保护隐私和安全,百度对WGS84坐标进行了偏移处理,导致其与WGS84坐标存在差异。火星坐标系(GCJ-02)是中国国家测绘局采用的坐标系,同样对WGS84坐标进行了加密处理,以防止未经授权的精确位置获取。 坐标转换的目的是确保不同坐标系下的地理位置数据能够准确对应。在GIS应用中,通常通过特定的算法实现转换,如双线性内插法或四参数转换法。一些“坐标转换小工具”可以批量转换百度坐标、火星坐标与WGS84坐标。这些工具可能包含样本文件(如org_xy_格式参考.csv),用于提供原始坐标数据,其中包含需要转换的经纬度信息。此外,工具通常会附带使用指南(如重要说明用前必读.txt和readme.txt),说明输入数据格式、转换步骤及可能的精度问题等。x86和x64目录则可能包含适用于32位和64位操作系统的软件或库文件。 在使用这些工具时,用户需要注意以下几点:确保输入的坐标数据准确无误,包括经纬度顺序和浮点数精度;按照工具要求正确组织数据,遵循读写规则;注意转换精度,不同的转换方法可能会产生微小误差;在批量转换时,检查每个坐标是否成功转换,避免个别错误数据影响整体结果。 坐标转换是GIS领域的基础操作,对于地图服务、导航系统和地理数据分析等至关重要。理解不同坐标系的特点和转换方法,有助于我们更好地处
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值