非常值得收藏的 IBM SPSS Modeler 算法简介

IBM SPSS Modeler以其图形化界面和拖拽方式简化了数据挖掘建模,涵盖多种算法,如自动建模、分类、聚类、关联分析等。自动建模器帮助初学者选择最优算法,包括自动分类器、数值预测和聚类。分类算法如C&R树、QUEST和CHAID,用于预测和分类。聚类算法如K-Means、Kohonen和TwoStep,用于数据细分。此外,还有时间序列分析、关联规则挖掘和异常检测等。最新版本17.1增加了11种分布式计算算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

IBM SPSS Modeler以图形化的界面、简单的拖拽方式来快速构建数据挖掘分析模型著称,它提供了完整的统计挖掘功能,包括来自于统计学、机器学习、人工智能等方面的分析算法和数据模型,包括如关联、分类、预测等完整的全面挖掘分析功能,下面让我们一起来了解这些算法:

spss

首先,针对刚入门数据挖掘领域的初学者来说,即使你不懂数据挖掘算法,你一样可以使用SPSS Modeler进行建模,这里提供了自动建模器,可以帮助你自动选择最优算法,包括有:

 

“自动分类器”节点:用于创建和对比二元结果(是或否,流失或不流失等)的若干不同模型,使用户可以选择给定分析的最佳处理方法。由于支持多种建模算法,因此可以对用户希望使用的方法、每种方法的特定选项以及对比结果的标准进行选择。节点根据指定的选项生成一组模型并根据用户指定的标准排列最佳候选项的顺序。

自动数值节点:使用多种不同方法估计和对比模型的连续数字范围结果。此节点和自动分类器节点的工作方式相同,因此可以选择要使用和要在单个建模传递中使用多个选项组合进行测试的算法。受支持的算法包括神经网络、C&R树、CHAID、线性回归、广义线性回归以及Support Vector Machine (SVM)。可基于相关度、相对错误或已用变量数对模型进行对比。

自动聚类节点:估算和比较识别具有类似特征记录组的聚类模型。节点工作方式与其他自动建模节点相同,使您在一次建模运行中即可试验多个选项组合。模型可使用基本测量进行比较,以尝试过滤聚类模型的有效性以及对其进行排序,并提供一个基于特定字段的重要性的测量。

时间序列节点:可为时间序列估计指数平滑模型、单变量综合自回归移动平均(ARIMA) 模型和多变量ARIMA(或变换函数)模型并基于时间序列数据生成预测。

 

接下来,是分类算法的介绍,分类是数据挖掘里面最常用的分析方式,它的计算逻辑是自我学习的过程,即有监督的学习,你需要给他一个目标,给他一些影响因素,它会自动找到影响因素与目标之间隐藏的规则。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值