@创建于:20210720
@修改于:20210720
1、快速查看评估指标
from sklearn import metrics
sorted(metrics.SCORERS.keys())
accuracy
adjusted_mutual_info_score
adjusted_rand_score
average_precision
balanced_accuracy
completeness_score
explained_variance
f1
f1_macro
f1_micro
f1_samples
f1_weighted
fowlkes_mallows_score
homogeneity_score
jaccard
jaccard_macro
jaccard_micro
jaccard_samples
jaccard_weighted
max_error
mutual_info_score
neg_brier_score
neg_log_loss
neg_mean_absolute_error
neg_mean_absolute_percentage_error
neg_mean_gamma_deviance
neg_mean_poisson_deviance
neg_mean_squared_error
neg_mean_squared_log_error
neg_median_absolute_error
neg_root_mean_squared_error
normalized_mutual_info_score
precision
precision_macro
precision_micro
precision_samples
precision_weighted
r2
rand_score
recall
recall_macro
recall_micro
recall_samples
recall_weighted
roc_auc
roc_auc_ovo
roc_auc_ovo_weighted
roc_auc_ovr
roc_auc_ovr_weighted
top_k_accuracy
v_measure_score
2、均方误差为负
在决策树和随机森林中均方误差为正,但是sklearn中的参数scoring下,均方误差作为评 判标准时,却是计算”负均方误差“(neg_mean_squared_error)。
这是因为sklearn在计算模型评估指标的时候, 会考虑指标本身的性质,均方误差本身是一种误差,所以被sklearn划分为模型的一种损失(loss)。在sklearn当中, 所有的损失都使用负数表示,因此均方误差也被显示为负数了。
真正的均方误差MSE的数值,其实就是 neg_mean_squared_error去掉负号的数字。
有些不一样啊~,暂未明白为什么。