Python 元组

Python的元组与列表类似,不同之处在于元组的元素不能修改。

元组使用小括号,列表使用方括号。

元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可。

如下实例:

tup1 = ('physics', 'chemistry', 1997, 2000);
tup2 = (1, 2, 3, 4, 5 );
tup3 = "a", "b", "c", "d";

创建空元组

tup1 = ();

元组中只包含一个元素时,需要在元素后面添加逗号

tup1 = (50,);

元组与字符串类似,下标索引从0开始,可以进行截取,组合等。


访问元组

元组可以使用下标索引来访问元组中的值,如下实例:

#!/usr/bin/python

tup1 = ('physics', 'chemistry', 1997, 2000);
tup2 = (1, 2, 3, 4, 5, 6, 7 );

print "tup1[0]: ", tup1[0]
print "tup2[1:5]: ", tup2[1:5]

以上实例输出结果:

tup1[0]:  physics
tup2[1:5]:  [2, 3, 4, 5]

修改元组

元组中的元素值是不允许修改的,但我们可以对元组进行连接组合,如下实例:

#!/usr/bin/python

tup1 = (12, 34.56);
tup2 = ('abc', 'xyz');

# 以下修改元组元素操作是非法的。
# tup1[0] = 100;

# 创建一个新的元组



print tup3;

以上实例输出结果:

(12, 34.56, 'abc', 'xyz')

删除元组

元组中的元素值是不允许删除的,但我们可以使用del语句来删除整个元组,如下实例:

#!/usr/bin/python

tup = ('physics', 'chemistry', 1997, 2000);

print tup;

print "After deleting tup : "
print tup;

以上实例元组被删除后,输出变量会有异常信息,输出如下所示:

('physics', 'chemistry', 1997, 2000)
After deleting tup :
Traceback (most recent call last):
  File "test.py", line 9, in <module>
    print tup;
NameError: name 'tup' is not defined

元组运算符

与字符串一样,元组之间可以使用 + 号和 * 号进行运算。这就意味着他们可以组合和复制,运算后会生成一个新的元组。

Python 表达式 结果 描述
len((1, 2, 3)) 3 计算元素个数
(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) 连接
['Hi!'] * 4 ('Hi!', 'Hi!', 'Hi!', 'Hi!') 复制
3 in (1, 2, 3) True 元素是否存在
for x in (1, 2, 3): print x, 1 2 3 迭代

元组索引,截取

因为元组也是一个序列,所以我们可以访问元组中的指定位置的元素,也可以截取索引中的一段元素,如下所示:

元组:

L = ('spam', 'Spam', 'SPAM!')
Python 表达式 结果 描述
L[2] 'SPAM!' 读取第三个元素
L[-2] 'Spam' 反向读取;读取倒数第二个元素
L[1:] ['Spam', 'SPAM!'] 截取元素

无关闭分隔符

任意无符号的对象,以逗号隔开,默认为元组,如下实例:

#!/usr/bin/python

print 'abc', -4.24e93, 18+6.6j, 'xyz';
x, y = 1, 2;
print "Value of x , y : ", x,y;

以上实例允许结果:

abc -4.24e+93 (18+6.6j) xyz
Value of x , y : 1 2

元组内置函数

Python元组包含了以下内置函数

序号 方法及描述
1

cmp(tuple1, tuple2)


比较两个元组元素。
2

len(tuple)


计算元组元素个数。
3

max(tuple)


返回元组中元素最大值。
4

min(tuple)


返回元组中元素最小值。
5

tuple(seq)


将列表转换为元组。
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值