一.常用线性模型:
- 线性回归
- 正则化线性模型-岭回归
- 套索回归
二.线性模型的图形化表示:
- coef_ 求系数
- intercept_ 求截距
##糖尿病测试
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import numpy as np
X,y = load_diabetes()['data'],load_diabetes()['target']
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=8)
lr = LinearRegression()
lr.fit(X,y)
print("训练数据得分:{:.2f}".format(lr.score(X_test,y_test)))
print(load_diabetes().keys())
print(load_diabetes()['data'][1])
print(load_diabetes()['feature_names'])
print(load_diabetes()['target'])
print(load_diabetes()['target_filename'])
'''
'''
newdia=[[18,1,110,100,0,0,0,0,0,0]]
predict = lr.predict(newdia)
print('测试结果:{}'.format(load_diabetes()['target'][predict]))
三.实例:
通过广义线性模型测试身高体重