01背包问题 二维
题目链接:No leetcode
讲解链接:代码随想录
二维dp数组01背包
依然动规五部曲分析一波。
- 确定dp数组以及下标的含义
我们需要使用二维数组,为什么呢?
因为有两个维度需要分别表示:物品 和 背包容量
如图,二维数组为 dp[i][j]。

那么这里 i 、j、dp[i][j] 分别表示什么呢?
i 来表示物品、j表示背包容量。
(如果想用j 表示物品,j表示背包容量 行不行? 都可以的,个人习惯而已)
我们来尝试把上面的 二维表格填写一下。
动态规划的思路是根据子问题的求解推导出整体的最优解。
我们先看把物品0 放入背包的情况:

背包容量为0,放不下物品0,此时背包里的价值为0。
背包容量为1,可以放下物品0,此时背包里的价值为15.
背包容量为2,依然可以放下物品0 (注意 01背包里物品只有一个),此时背包里的价值为15。
以此类推。
再看把物品1 放入背包:

背包容量为 0,放不下物品0 或者物品1,此时背包里的价值为0。
背包容量为 1,只能放下物品0,背包里的价值为15。
背包容量为 2,只能放下物品0,背包里的价值为15。
背包容量为 3,上一行同一状态,背包只能放物品0,这次也可以选择物品1了,背包可以放物品1 或者 物品0,物品1价值更大,背包里的价值为20。
背包容量为 4,上一行同一状态,背包只能放物品0,这次也可以选择物品1了,背包可以放下物品0 和 物品1,背包价值为35。
以上举例,是比较容易看懂,我主要是通过这个例子,来帮助大家明确dp数组的含义。
上图中,我们看 dp[1][4] 表示什么意思呢。
任取 物品0,物品1 放进容量为4的背包里,最大价值是 dp[1][4]。
通过这个举例,我们来进一步明确dp数组的含义。
即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。
- 确定递推公式
这里在把基本信息给出来:
| 重量 | 价值 | |
|---|---|---|
| 物品0 | 1 | 15 |
| 物品1 | 3 | 20 |
| 物品2 | 4 | 30 |
对于递推公式,首先我们要明确有哪些方向可以推导出 dp[i][j]。
这里我们dp[1][4]的状态来举例:
求取 dp[1][4] 有两种情况:
- 放物品1
- 还是不放物品1
如果不放物品1, 那么背包的价值应该是 dp[0][4] 即 容量为4的背包,只放物品0的情况。
推导方向如图:

如果放物品1, 那么背包要先留出物品1的容量,目前容量是4,物品1 的容量(就是物品1的重量)为3,此时背包剩下容量为1。
容量为1,只考虑放物品0 的最大价值是 dp[0][1],这个值我们之前就计算过。
所以 放物品1 的情况 = dp[0][1] + 物品1 的价值,推导方向如图:

两种情况,分别是放物品1 和 不放物品1,我们要取最大值(毕竟求的是最大价值)
dp[1][4] = max(dp[0][4], dp[0][1] + 物品1 的价值)
以上过程,抽象化如下:
-
不放物品i:背包容量为j,里面不放物品i的最大价值是dp[i - 1][j]。
-
放物品i:背包空出物品i的容量后,背包容量为j - weight[i],dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]且不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
- dp数组如何初始化
关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。
首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:

在看其他情况。
状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。
dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。
那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。
当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。
代码初始化如下:
for (int j = 0 ; j < weight[0]; j++) { // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略,但很多同学应该没有想清楚这一点。
dp[0][j] = 0;
}
// 正序遍历
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
}
此时dp数组初始化情况如图所示:

dp[0][j] 和 dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?
其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。
初始-1,初始-2,初始100,都可以!
但只不过一开始就统一把dp数组统一初始为0,更方便一些。
如图:

最后初始化代码如下:
// 初始化 dp
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
}
费了这么大的功夫,才把如何初始化讲清楚,相信不少同学平时初始化dp数组是凭感觉来的,但有时候感觉是不靠谱的。
- 确定遍历顺序
在如下图中,可以看出,有两个遍历的维度:物品与背包重量

那么问题来了,先遍历 物品还是先遍历背包重量呢?
其实都可以!! 但是先遍历物品更好理解。
那么我先给出先遍历物品,然后遍历背包重量的代码。
// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
先遍历背包,再遍历物品,也是可以的!(注意我这里使用的二维dp数组)
例如这样:
// weight数组的大小 就是物品个数
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
for(int i = 1; i < weight.size(); i++) { // 遍历物品
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
为什么也是可以的呢?
要理解递归的本质和递推的方向。
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。
dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

再来看看先遍历背包,再遍历物品呢,如图:

大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!
但先遍历物品再遍历背包这个顺序更好理解。
其实背包问题里,两个for循环的先后循序是非常有讲究的,理解遍历顺序其实比理解推导公式难多了。
- 举例推导dp数组
来看一下对应的dp数组的数值,如图:

最终结果就是dp[2][4]。
建议大家此时自己在纸上推导一遍,看看dp数组里每一个数值是不是这样的。
做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!
public class Main{
public static void main(String[] args){
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int bagweight = scanner.nextInt();
int[] weight = new int[n];
int[] value = new int[n];
for(int i = 0; i < n; ++i){
weight[i] = scanner.nextInt();
}
for(int j = 0; j < n; ++j){
value[j] = scanner.nextInt();
}
int[][] dp = new int[n][bagweight + 1];
//物品0 重量为weight[0] 价值为value[0]
for(int j = weight[0]; j <= bagweight; j++){
dp[0][j] = value[0];//初始化第一行
}
for(int i = 1; i < n; i++){
for(int j = 0; j <= bagweight; j++){
if(j < weight[i]){
//如果背包容量小于当前物品的重量
dp[i][j] = dp[i - 1][j];//那就直接复制上一个物品的价值
}else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
//看图解 找例子解释
}
}
}
System.out.println(dp[n - 1][bagweight]);
// 看图解 返回数组元素
}
}
多练手 多思考 多回忆
01背包问题 一维
题目链接:NULL
讲解链接:代码随想录
把维度改为一维 数组也改变含义
public class Main{
public static void main(String[] args){
Scanner scanner = new Scanner(System.in);
//读取 m 和 n
int m = scanner.nextInt(); // 物品个数
int n = scanner.nextInt(); // 空间大小
int[] weight = new int[m];//每个物品的空间占用
int[] value = new int[m];//每个物品的价值
//输入每个物品的重量
for(int i = 0; i < m; i++){
weight[i] = scanner.nextInt();
}
//输入每个物品的价值
for(int j = 0; j < m; j++){
value[j] = scanner.nextInt();
}
//创建一个动态规划数组 dp 初始化
int[] dp = new int[n + 1];
//外部循环遍历每个物品
for(int i = 0; i < m; i++){
//内层循环 从n空间 逐渐减少到当前物品的重量
for(int j = n; j >= weight[i]; j--){
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
//输出 dp[n] 即 在给定容量背包可以容量的最大价值
System.out.println(dp[n]);
scanner.close();
}
}
416. 分割等和子集
题目链接:416. 分割等和子集 - 力扣(LeetCode)
讲解链接:代码随想录
没看题 有点其他的事情影响到我了 很烦 但是具体代码流程理解了
Java代码:
class Solution{
public boolean canPartition(int[] nums){
if(nums == null || nums.length == 0) return false;
int n = nums.length;
int sum = 0;
for(int num : nums){
sum += num;
}
//总和为奇数 不能平分
if(sum % 2 != 0) return false;
int target = sum / 2;
int[] dp = new int[target + 1];
for(int i = 0; i < n; i++){
for(int j = target; j >= nums[i]; j--){
//物品 i 的重量是 nums[i] 其价值也是 nums[i]
dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);
}
//剪枝一下 每次完成内置的for 立刻检查dp[target] == target
if(dp[target] == target){
return true;
}
}
return dp[target] == target;
}
}
哎
新年快乐 祝自己吧 好好学习早早找工作
4083

被折叠的 条评论
为什么被折叠?



