代码随想录训练营第三十五天| 01背包问题 二维 01背包问题 一维 416. 分割等和子集

01背包问题 二维

题目链接:No leetcode

讲解链接:代码随想录

二维dp数组01背包

依然动规五部曲分析一波。

  1. 确定dp数组以及下标的含义

我们需要使用二维数组,为什么呢?

因为有两个维度需要分别表示:物品 和 背包容量

如图,二维数组为 dp[i][j]。

动态规划-背包问题1

那么这里 i 、j、dp[i][j] 分别表示什么呢?

i 来表示物品、j表示背包容量。

(如果想用j 表示物品,j表示背包容量 行不行? 都可以的,个人习惯而已)

我们来尝试把上面的 二维表格填写一下。

动态规划的思路是根据子问题的求解推导出整体的最优解。

我们先看把物品0 放入背包的情况:

背包容量为0,放不下物品0,此时背包里的价值为0。

背包容量为1,可以放下物品0,此时背包里的价值为15.

背包容量为2,依然可以放下物品0 (注意 01背包里物品只有一个),此时背包里的价值为15。

以此类推。

再看把物品1 放入背包:

背包容量为 0,放不下物品0 或者物品1,此时背包里的价值为0。

背包容量为 1,只能放下物品0,背包里的价值为15。

背包容量为 2,只能放下物品0,背包里的价值为15。

背包容量为 3,上一行同一状态,背包只能放物品0,这次也可以选择物品1了,背包可以放物品1 或者 物品0,物品1价值更大,背包里的价值为20。

背包容量为 4,上一行同一状态,背包只能放物品0,这次也可以选择物品1了,背包可以放下物品0 和 物品1,背包价值为35。

以上举例,是比较容易看懂,我主要是通过这个例子,来帮助大家明确dp数组的含义。

上图中,我们看 dp[1][4] 表示什么意思呢。

任取 物品0,物品1 放进容量为4的背包里,最大价值是 dp[1][4]。

通过这个举例,我们来进一步明确dp数组的含义。

dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。

  1. 确定递推公式

这里在把基本信息给出来:

重量价值
物品0115
物品1320
物品2430

对于递推公式,首先我们要明确有哪些方向可以推导出 dp[i][j]。

这里我们dp[1][4]的状态来举例:

求取 dp[1][4] 有两种情况:

  1. 放物品1
  2. 还是不放物品1

如果不放物品1, 那么背包的价值应该是 dp[0][4] 即 容量为4的背包,只放物品0的情况。

推导方向如图:

如果放物品1, 那么背包要先留出物品1的容量,目前容量是4,物品1 的容量(就是物品1的重量)为3,此时背包剩下容量为1。

容量为1,只考虑放物品0 的最大价值是 dp[0][1],这个值我们之前就计算过。

所以 放物品1 的情况 = dp[0][1] + 物品1 的价值,推导方向如图:

两种情况,分别是放物品1 和 不放物品1,我们要取最大值(毕竟求的是最大价值)

dp[1][4] = max(dp[0][4], dp[0][1] + 物品1 的价值)

以上过程,抽象化如下:

  • 不放物品i:背包容量为j,里面不放物品i的最大价值是dp[i - 1][j]。

  • 放物品i:背包空出物品i的容量后,背包容量为j - weight[i],dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]且不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

  1. dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:

动态规划-背包问题2

在看其他情况。

状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

代码初始化如下:

for (int j = 0 ; j < weight[0]; j++) {  // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略,但很多同学应该没有想清楚这一点。
    dp[0][j] = 0;
}
// 正序遍历
for (int j = weight[0]; j <= bagweight; j++) {
    dp[0][j] = value[0];
}

此时dp数组初始化情况如图所示:

动态规划-背包问题7

dp[0][j] 和 dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?

其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

初始-1,初始-2,初始100,都可以!

但只不过一开始就统一把dp数组统一初始为0,更方便一些。

如图:

动态规划-背包问题10

最后初始化代码如下:

// 初始化 dp
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
for (int j = weight[0]; j <= bagweight; j++) {
    dp[0][j] = value[0];
}

费了这么大的功夫,才把如何初始化讲清楚,相信不少同学平时初始化dp数组是凭感觉来的,但有时候感觉是不靠谱的

  1. 确定遍历顺序

在如下图中,可以看出,有两个遍历的维度:物品与背包重量

动态规划-背包问题3

那么问题来了,先遍历 物品还是先遍历背包重量呢?

其实都可以!! 但是先遍历物品更好理解

那么我先给出先遍历物品,然后遍历背包重量的代码。

// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品
    for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
        if (j < weight[i]) dp[i][j] = dp[i - 1][j];
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

    }
}

先遍历背包,再遍历物品,也是可以的!(注意我这里使用的二维dp数组)

例如这样:

// weight数组的大小 就是物品个数
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
    for(int i = 1; i < weight.size(); i++) { // 遍历物品
        if (j < weight[i]) dp[i][j] = dp[i - 1][j];
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
    }
}

为什么也是可以的呢?

要理解递归的本质和递推的方向

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。

dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

动态规划-背包问题5

再来看看先遍历背包,再遍历物品呢,如图:

动态规划-背包问题6

大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!

但先遍历物品再遍历背包这个顺序更好理解。

其实背包问题里,两个for循环的先后循序是非常有讲究的,理解遍历顺序其实比理解推导公式难多了

  1. 举例推导dp数组

来看一下对应的dp数组的数值,如图:

动态规划-背包问题4

最终结果就是dp[2][4]。

建议大家此时自己在纸上推导一遍,看看dp数组里每一个数值是不是这样的。

做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!

public class Main{
    public static void main(String[] args){
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        int bagweight = scanner.nextInt();
        
        int[] weight = new int[n];
        int[] value = new int[n];
        for(int i = 0; i < n; ++i){
            weight[i] = scanner.nextInt();
        }
        for(int j = 0; j < n; ++j){
            value[j] = scanner.nextInt();
        }
        
        int[][] dp = new int[n][bagweight + 1];
        //物品0 重量为weight[0] 价值为value[0] 
        for(int j = weight[0]; j <= bagweight; j++){
            dp[0][j] = value[0];//初始化第一行
        }
        for(int i = 1; i < n; i++){
            for(int j = 0; j <= bagweight; j++){
                if(j < weight[i]){
                    //如果背包容量小于当前物品的重量
                    dp[i][j] = dp[i - 1][j];//那就直接复制上一个物品的价值
                }else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
                    //看图解 找例子解释
                }
            }
        }
        System.out.println(dp[n - 1][bagweight]);
        // 看图解 返回数组元素
    }
}

多练手 多思考 多回忆 

 01背包问题 一维  

题目链接:NULL

讲解链接:代码随想录

把维度改为一维 数组也改变含义

public class Main{
    public static void main(String[] args){
        Scanner scanner = new Scanner(System.in);
        //读取 m 和 n
        int m = scanner.nextInt(); // 物品个数
        int n = scanner.nextInt(); // 空间大小

        int[] weight = new int[m];//每个物品的空间占用
        int[] value = new int[m];//每个物品的价值

        //输入每个物品的重量
        for(int i = 0; i < m; i++){
            weight[i] = scanner.nextInt();
        }
        //输入每个物品的价值
        for(int j = 0; j < m; j++){
            value[j] = scanner.nextInt();
        }
        //创建一个动态规划数组 dp 初始化
        int[] dp = new int[n + 1];
        //外部循环遍历每个物品
        for(int i = 0; i < m; i++){
            //内层循环 从n空间 逐渐减少到当前物品的重量
            for(int j = n; j >= weight[i]; j--){
                dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
            }
        }
        //输出 dp[n] 即 在给定容量背包可以容量的最大价值
        System.out.println(dp[n]);
        scanner.close();
    }
}

416. 分割等和子集  

题目链接:416. 分割等和子集 - 力扣(LeetCode)

讲解链接:代码随想录

没看题 有点其他的事情影响到我了 很烦 但是具体代码流程理解了

Java代码:

class Solution{
    public boolean canPartition(int[] nums){
        if(nums == null || nums.length == 0) return false;
        int n = nums.length;
        int sum = 0;
        for(int num : nums){
            sum += num;
        }
        //总和为奇数 不能平分
        if(sum % 2 != 0) return false;
        int target = sum / 2;
        int[] dp = new int[target + 1];
        for(int i = 0; i < n; i++){
            for(int j = target; j >= nums[i]; j--){
                //物品 i 的重量是 nums[i] 其价值也是 nums[i]
                dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);
            }
            
            //剪枝一下 每次完成内置的for 立刻检查dp[target] == target
            if(dp[target] == target){
                return true;
            }
        }
        return dp[target] == target;
    }
}

新年快乐 祝自己吧 好好学习早早找工作

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值