斐波那契数(C/C++,Scheme)

本文深入探讨了递归与迭代两种编程方法在计算斐波那契数列和阶乘问题中的应用,通过对比分析,详细解释了两种方法的核心概念及其实现方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、背景

斐波那契数的定义:

f0=0

f1=1

fi=fi1+fi2(i>1)

二、分析

我引用两张表,大家一看便懂。

1.递归

(factorial 6)
(* 6 (factorial 5))
(* 6 (* 5 (factorial 4)))
(* 6 (* 5 (* 4 (factorial 3))))
(* 6 (* 5 (* 4 (* 3 (factorial 2)))))
(* 6 (* 5 (* 4 (* 3 (2 (factorial 1))))))
(* 6 (* 5 (* 4 (* 3 (* 2 1)))))
(* 6 (* 5 (* 4 (* 3 2)))) (* 6 (* 5 (* 4 6))) (* 6 (* 5 24)) (* 6 120) 720

2.迭代

(factorial 6)
(factorial 1 1 6)
(factorial 1 2 6)
(factorial 2 3 6)
(factorial 6 4 6)
(factorial 24 5 6)
(factorial 120 6 6)
(factorial 720 7 6)
720

递归的核心在于:不断地回到起点。
迭代的核心在于:不断地更新参数。

在下面的代码中,递归的核心是sum的运算,sum不断的累乘,虽然运算的数值不同,但形式和意义一样。

而迭代的核心是product和counter的不断更新。如上表中,product就是factorial的前2个参数不断的累乘更新成第一个参数;而第二个参数则是counter,其不断的加1来更新自己。

product <- counter * product
counter < - counter + 1

三、代码

C语言版

#include <stdio.h>
#include <stdlib.h>

int factorialRecursive(int n);
int factorialIteration(int product, int counter, int max_count);

int main()
{
    int n;
    printf("Enter an integer: \n");
    scanf("%d",&n);

    printf("%d\n",factorialRecursive(n));
    printf("%d\n",factorialIteration(1,1,n));

    return 0;
}

int factorialRecursive(int n)
{
    int sum=1;
    if(n==1)
        sum*=1;
    else
        sum=n*factorialRecursive(n-1);
    return sum;
}

int factorialIteration(int product, int counter, int max_count)
{
    int sum=1;
    if(counter>max_count)
        sum*=product;
    else
        factorialIteration((counter*product),(counter+1),max_count);
}

C++语言版

#include <iostream>

using namespace std;

int factorialRecursive(int n);
int factorialIteration(int product, int counter, int max_count);

int main()
{
    int n;
    cout<<"Enter an integer:"<<endl;
    cin>>n;
    cout<<factorialRecursive(n)<<endl;
    cout<<factorialIteration(1,1,n)<<endl;

    return 0;
}

int factorialRecursive(int n)
{
    int sum=1;
    if(n==1)
        sum*=1;
    else
        sum=n*factorialRecursive(n-1);
    return sum;
}

int factorialIteration(int product, int counter, int max_count)
{
    int sum=1;
    if(counter>max_count)
        sum*=product;
    else
        factorialIteration((counter*product),(counter+1),max_count);
}

四、进阶

Scheme语言版

(define (factorial n) (if (= n 1) 1 (* n (factorial (- n 1)))))
(define (factorial n) (fact-iter 1 1 n))
(define (fact-iter product counter max-count) (if (> counter max-count) product (fact-iter (* counter product) (+ counter 1) max-counter)))



为使本文得到斧正和提问,转载请注明出处:
http://blog.youkuaiyun.com/nomasp

版权声明:本文为 NoMasp柯于旺 原创文章,未经许可严禁转载!欢迎访问我的博客:http://blog.youkuaiyun.com/nomasp

转载于:https://my.oschina.net/nomasp/blog/503188

内容概要:文章基于4A架构(业务架构、应用架构、据架构、技术架构),对SAP的成本中心和利润中心进行了详细对比分析。业务架构上,成本中心是成本控制的责任单元,负责成本归集与控制,而利润中心是利润创造的独立实体,负责收入、成本和利润的核算。应用架构方面,两者都依托于SAP的CO模块,但功能有所区分,如成本中心侧重于成本要素归集和预算管理,利润中心则关注内部交易核算和获利能力分析。据架构中,成本中心与利润中心存在多对一的关系,交易据通过成本归集、分摊和利润计算流程联动。技术架构依赖SAP S/4HANA的内存计算和ABAP技术,支持实时核算与跨系统集成。总结来看,成本中心和利润中心在4A架构下相互关联,共同为企业提供精细化管理和决策支持。 适合人群:从事企业财务管理、成本控制或利润核算的专业人员,以及对SAP系统有一定了解的企业信息化管理人员。 使用场景及目标:①帮助企业理解成本中心和利润中心在4A架构下的运作机制;②指导企业在实施SAP系统时合理配置成本中心和利润中心,优化业务流程;③提升企业对成本和利润的精细化管理水平,支持业务决策。 其他说明:文章不仅阐述了理论概念,还提供了具体的应用场景和技术实现方式,有助于读者全面理解并应用于实际工作中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值