一些在SLAM中经常用到的关于李群李代数方面的知识
Special Orthogonal Group SO(3)SO(3) and so(3)so(3)
The group SO(3)SO(3) forms a smooth manifold, and its tangent space (at the identity) denoted as so(3)so(3).
SO(3)so(3)={R∈R3×3∣RR⊺=I,det(R)=1}={ϕ∈R3,Φ=ϕ∧∈R3×3}SO(3)={R∈R3×3∣RR⊺=I,det(R)=1}so(3)={ϕ∈R3,Φ=ϕ∧∈R3×3}
where
ϕ∧=⎡⎣⎢0ϕ3−ϕ2−ϕ30ϕ1ϕ2−ϕ10⎤⎦⎥ϕ∧=[0−ϕ3ϕ2ϕ30−ϕ1−ϕ2ϕ10]
- SO(3)SO(3): Rotation Matrix RR
- : Angle-Axis ϕ=θaϕ=θa
- Connection: Rodrigues’s Formula
Exp Map
so(3)→SO(3)so(3)→SO(3)
R=exp(ϕ∧)=exp(θa∧)=cosθI+(1−sinθ)aa⊺+sinθa∧R=exp(ϕ∧)=exp(θa∧)=cosθI+(1−sinθ)aa⊺+sinθa∧
Introduce Exp(ϕ)=exp(ϕ∧)Exp(ϕ)=exp(ϕ∧), then the abode equation can written as:
R=Exp(ϕ)=Exp(θa)=cosθI+(1−sinθ)aa⊺+sinθa∧R=Exp(ϕ)=Exp(θa)=cosθI+(1−sinθ)aa⊺+sinθa∧
Log Map
SO(3)→so(3)SO(3)→so(3)
θRaϕ=arccos(tr(R)−12)=a=θaθ=arccos(tr(R)−12)Ra=aϕ=θa
BCH Formula
Exp(ϕ+Δϕ)≈Exp(ϕ)Exp(Jr(ϕ)Δϕ)=Exp(Jl(ϕ)Δϕ)Exp(ϕ)Exp(ϕ+Δϕ)≈Exp(ϕ)Exp(Jr(ϕ)Δϕ)=Exp(Jl(ϕ)Δϕ)Exp(ϕ)
where
Jl(ϕ)=Jr(−ϕ)=sinθθI+(1−sinθθ)aa⊺+(1−cosθθ)a∧Jl(ϕ)=Jr(−ϕ)=sinθθI+(1−sinθθ)aa⊺+(1−cosθθ)a∧
Log(Exp(ϕ)Exp(δϕ))≈Log(Exp(δϕ)Exp(ϕ))≈ϕ+J−1r(ϕ)δϕJ−1l(ϕ)δϕ+ϕLog(Exp(ϕ)Exp(δϕ))≈ϕ+Jr−1(ϕ)δϕLog(Exp(δϕ)Exp(ϕ))≈Jl−1(ϕ)δϕ+ϕ
Property
RExp(ϕ)R⊺=⇔Exp(ϕ)R=exp(Rϕ∧R⊺)=Exp(Rϕ)RExp(R⊺ϕ)RExp(ϕ)R⊺=exp(Rϕ∧R⊺)=Exp(Rϕ)⇔Exp(ϕ)R=RExp(R⊺ϕ)
Special Euclidean Group SE(3)SE(3) and se(3)se(3)
SE(3)se(3)={T=[R0⊺p1]∈R4×4∣R∈SO(3),p∈R3}={ξ=[ρϕ]∈R6,ρ∈R3,ϕ∈so(3),ξ∧=[ϕ∧0⊺ρ0]∈R4×4}SE(3)={T=[Rp0⊺1]∈R4×4∣R∈SO(3),p∈R3}se(3)={ξ=[ρϕ]∈R6,ρ∈R3,ϕ∈so(3),ξ∧=[ϕ∧ρ0⊺0]∈R4×4}
- SE(3)SE(3): Pose (Rotation RR + Translation pp), Matrix
- se(3)se(3): Angle Axis ϕϕ + Translation ρρ, Vector
Property
T−1=[R⊺0⊺−R⊺p1]T−1=[R⊺−R⊺p0⊺1]
Gaussian Random Variables
R˜T˜=RExp(Δϕ)=[RExp(Δϕ)0⊺p+RΔp1]R~=RExp(Δϕ)T~=[RExp(Δϕ)p+RΔp0⊺1]
where RR and pp is the noise-free rotation and translation respectively, and ΔϕΔϕ and ΔpΔp is the perturbations (Gaussian white noise)