Lie Groups and Lie Algebras

本文详细介绍了在SLAM(同时定位与地图构建)领域中常用的李群和李代数基础知识,包括特殊正交群SO(3)及其对应的李代数so(3),以及特殊欧几里得群SE(3)和其对应的李代数se(3)。文中还探讨了指数映射和对数映射,并给出了Rodrigues公式等连接李群与李代数的重要概念。

一些在SLAM中经常用到的关于李群李代数方面的知识

Special Orthogonal Group SO(3)SO(3) and so(3)so(3)

The group SO(3)SO(3) forms a smooth manifold, and its tangent space (at the identity) denoted as so(3)so(3).

SO(3)so(3)={RR3×3RR=I,det(R)=1}={ϕR3,Φ=ϕR3×3}SO(3)={R∈R3×3∣RR⊺=I,det(R)=1}so(3)={ϕ∈R3,Φ=ϕ∧∈R3×3}

where
ϕ=0ϕ3ϕ2ϕ30ϕ1ϕ2ϕ10ϕ∧=[0−ϕ3ϕ2ϕ30−ϕ1−ϕ2ϕ10]
  • SO(3)SO(3): Rotation Matrix RR
  • so(3): Angle-Axis ϕ=θaϕ=θa
  • Connection: Rodrigues’s Formula

Exp Map

so(3)SO(3)so(3)→SO(3)

R=exp(ϕ)=exp(θa)=cosθI+(1sinθ)aa+sinθaR=exp⁡(ϕ∧)=exp⁡(θa∧)=cos⁡θI+(1−sin⁡θ)aa⊺+sin⁡θa∧

Introduce Exp(ϕ)=exp(ϕ)Exp(ϕ)=exp⁡(ϕ∧), then the abode equation can written as:

R=Exp(ϕ)=Exp(θa)=cosθI+(1sinθ)aa+sinθaR=Exp(ϕ)=Exp(θa)=cos⁡θI+(1−sin⁡θ)aa⊺+sin⁡θa∧

Log Map

SO(3)so(3)SO(3)→so(3)

θRaϕ=arccos(tr(R)12)=a=θaθ=arccos⁡(tr(R)−12)Ra=aϕ=θa

BCH Formula

Exp(ϕ+Δϕ)Exp(ϕ)Exp(Jr(ϕ)Δϕ)=Exp(Jl(ϕ)Δϕ)Exp(ϕ)Exp(ϕ+Δϕ)≈Exp(ϕ)Exp(Jr(ϕ)Δϕ)=Exp(Jl(ϕ)Δϕ)Exp(ϕ)

where

Jl(ϕ)=Jr(ϕ)=sinθθI+(1sinθθ)aa+(1cosθθ)aJl(ϕ)=Jr(−ϕ)=sin⁡θθI+(1−sin⁡θθ)aa⊺+(1−cos⁡θθ)a∧

Log(Exp(ϕ)Exp(δϕ))Log(Exp(δϕ)Exp(ϕ))ϕ+J1r(ϕ)δϕJ1l(ϕ)δϕ+ϕLog(Exp(ϕ)Exp(δϕ))≈ϕ+Jr−1(ϕ)δϕLog(Exp(δϕ)Exp(ϕ))≈Jl−1(ϕ)δϕ+ϕ

Property

RExp(ϕ)R=Exp(ϕ)R=exp(RϕR)=Exp(Rϕ)RExp(Rϕ)RExp(ϕ)R⊺=exp⁡(Rϕ∧R⊺)=Exp(Rϕ)⇔Exp(ϕ)R=RExp(R⊺ϕ)

Special Euclidean Group SE(3)SE(3) and se(3)se(3)

SE(3)se(3)={T=[R0p1]R4×4RSO(3),pR3}={ξ=[ρϕ]R6,ρR3,ϕso(3),ξ=[ϕ0ρ0]R4×4}SE(3)={T=[Rp0⊺1]∈R4×4∣R∈SO(3),p∈R3}se(3)={ξ=[ρϕ]∈R6,ρ∈R3,ϕ∈so(3),ξ∧=[ϕ∧ρ0⊺0]∈R4×4}
  • SE(3)SE(3): Pose (Rotation RR + Translation pp), Matrix
  • se(3)se(3): Angle Axis ϕϕ + Translation ρρ, Vector

Property

T1=[R0Rp1]T−1=[R⊺−R⊺p0⊺1]

Gaussian Random Variables

R˜T˜=RExp(Δϕ)=[RExp(Δϕ)0p+RΔp1]R~=RExp(Δϕ)T~=[RExp(Δϕ)p+RΔp0⊺1]

where RR and pp is the noise-free rotation and translation respectively, and ΔϕΔϕ and ΔpΔp is the perturbations (Gaussian white noise)

李群的一本书,是扫描版,书的质量不错。 This book is intended for a one year graduate course on Lie groups and Lie algebras. The author proceeds beyond the representation theory of compact Lie groups (which is the basis of many texts)and provides a carefully chosen range of material to give the student the bigger picture. For compact Lie groups, the Peter-Weyl theorem, conjugacy of maximal tori (two proofs), Weyl character formula and more are covered. The book continues with the study of complex analytic groups, then general noncompact Lie groups, including the Coxeter presentation of the Weyl group, the Iwasawa and Bruhat decompositions, Cartan decomposition, symmetric spaces, Cayley transforms, relative root systems, Satake diagrams, extended Dynkin diagrams and a survey of the ways Lie groups may be embedded in one another. The book culminates in a "topics" section giving depth to the student's understanding of representation theory, taking the Frobenius-Schur duality between the representation theory of the symmetric group and the unitary groups as a unifying theme, with many applications in diverse areas such as random matrix theory, minors of Toeplitz matrices, symmetric algebra decompositions, Gelfand pairs, Hecke algebras, representations of finite general linear groups and the cohomology of Grassmannians and flag varieties.   Daniel Bump is Professor of Mathematics at Stanford University. His research is in automorphic forms, representation theory and number theory. He is a co-author of GNU Go, a computer program that plays the game of Go. His previous books include Automorphic Forms and Representations (Cambridge University Press 1997)and Algebraic Geometry (World Scientific 1998).
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值