几个工厂模式初识

[b][size=x-large]简单工厂模式、工厂方法模式及抽象工厂模式[/size][/b]
[size=large][b]一、实现方法[/b][/size]
[size=medium]简单工厂:[/size]
public interface Product
{
}


public interface Fruit
{
void grow();

void harvest();

void plant();
}

package com.javapatterns.simplefactory;

public class Grape implements Fruit
{
public void grow()
{
System.out.println("Grape is growing...");
}

public void harvest()
{
System.out.println("Grape has been harvested.");
}

public void plant()
{
System.out.println("Grape has been planted.");
}

public boolean getSeedless()
{
return seedless;
}

public void setSeedless(boolean seedless)
{
this.seedless = seedless;
}

private boolean seedless;
}

package com.javapatterns.simplefactory;

public class Strawberry implements Fruit
{

public void grow()
{
System.out.println("Strawberry is growing...");
}

public void harvest()
{
System.out.println("Strawberry has been harvested.");
}

public void plant()
{
System.out.println("Strawberry has been planted.");
}

}

package com.javapatterns.simplefactory;

public class Apple implements Fruit
{

public void grow()
{
System.out.println("Apple is growing...");
}

public void harvest()
{
System.out.println("Apple has been harvested.");
}

public void plant()
{
System.out.println("Apple has been planted.");
}

public int getTreeAge(){ return treeAge; }

public void setTreeAge(int treeAge){ this.treeAge = treeAge; }

private int treeAge;
}

package com.javapatterns.simplefactory;

public class FruitGardener
{
public static Fruit factory(String which) throws BadFruitException
{
if (which.equalsIgnoreCase("apple"))
{
return new Apple();
}
else if (which.equalsIgnoreCase("strawberry"))
{
return new Strawberry();
}
else if (which.equalsIgnoreCase("grape"))
{
return new Grape();
}
else
{
throw new BadFruitException("Bad fruit request");
}
}
}


[color=red]重要的开-闭原则 因为在引入新的产品需要修改工厂所有引入工厂方法模式[/color]

[size=medium]工厂方法:[/size]
package com.javapatterns.factorymethod.farm;

public interface Fruit
{
void grow();

void harvest();

void plant();
}
package com.javapatterns.factorymethod.farm;

public class Grape implements Fruit
{
public void grow()
{
System.out.println("Grape is growing...");
}

public void harvest()
{
System.out.println("Grape has been harvested.");
}

public void plant()
{
System.out.println("Grape has been planted.");
}

public boolean getSeedless()
{
return seedless;
}

public void setSeedless(boolean seedless)
{
this.seedless = seedless;
}

private boolean seedless;
}

package com.javapatterns.factorymethod.farm;

public class Strawberry implements Fruit
{

public void grow()
{
System.out.println("Strawberry is growing...");
}

public void harvest()
{
System.out.println("Strawberry has been harvested.");
}

public void plant()
{
System.out.println("Strawberry has been planted.");
}

}

package com.javapatterns.factorymethod.farm;

public class Apple implements Fruit
{
private int treeAge;

public void grow()
{
System.out.println("Apple is growing...");
}

public void harvest()
{
System.out.println("Apple has been harvested.");
}

public void plant()
{
System.out.println("Apple has been planted.");
}

public int getTreeAge()
{
return treeAge;
}

public void setTreeAge(int treeAge)
{
this.treeAge = treeAge;
}

}

package com.javapatterns.factorymethod.farm;

public interface FruitGardener
{
public Fruit factory();

/** @link dependency
* @label Creates*/
/*# Fruit lnkFruit; */
}

package com.javapatterns.factorymethod.farm;

public class StrawberryGardener implements FruitGardener
{
public Fruit factory()
{
return new Apple();
}
}

package com.javapatterns.factorymethod.farm;

public class GrapeGardener implements FruitGardener
{
public Fruit factory()
{
return new Apple();
}
}

package com.javapatterns.factorymethod.farm;

public class AppleGardener implements FruitGardener
{
public Fruit factory()
{
return new Apple();
}
}

[color=red]如果说现在又要新增一个产品族与Fruit等级的产品此时会新增n多的工厂于是引入抽象工厂[/color]
[size=medium]抽象工厂[/size]
package com.javapatterns.abstractfactory;

public interface ProductA
{
}

package com.javapatterns.abstractfactory;

public class ProductA1 implements ProductA
{
public ProductA1()
{
}
}

package com.javapatterns.abstractfactory;

public class ProductA2 implements ProductA
{
public ProductA2()
{
}
}

package com.javapatterns.abstractfactory;

public interface ProductB
{
}

package com.javapatterns.abstractfactory;

public class ProductB1 implements ProductB
{
public ProductB1()
{
}
}

package com.javapatterns.abstractfactory;

public class ProductB2 implements ProductB
{
public ProductB2()
{
}
}

package com.javapatterns.abstractfactory;

public interface Creator
{
public ProductA factoryA();

public ProductB factoryB();
}

package com.javapatterns.abstractfactory;

public class ConcreteCreator1 implements Creator
{
public ProductA factoryA()
{
return new ProductA1();
}

public ProductB factoryB()
{
return new ProductB1();
}

/** @link dependency */
/*# ProductA1 lnkProductA1; */

/** @link dependency */
/*# ProductB1 lnkProductB1; */
}

package com.javapatterns.abstractfactory;

public class ConcreteCreator2 implements Creator
{
public ProductA factoryA()
{
return new ProductA1();
}

public ProductB factoryB()
{
return new ProductB1();
}

/** @link dependency */
/*# ProductA2 lnkProductA2; */

/** @link dependency */
/*# ProductB2 lnkProductB2; */
}

[size=large][b]二、三者的联系[/b][/size]

以实例图为:
[img]http://dl.iteye.com/upload/attachment/264783/b6edcebb-6cf5-3752-aebc-5fc6c626e2d2.jpg[/img]
[img]http://dl.iteye.com/upload/attachment/264785/26b73fd5-d601-3e46-9655-144a0e56bc2b.jpg[/img]
基于C2000 DSP的电力电子、电机驱动和数字滤波器的仿真模型构建及其C代码实现方法。首先,在MATLAB/Simulink环境中创建电力电子系统的仿真模型,如三相逆变器,重点讨论了PWM生成模块中死区时间的设置及其对输出波形的影响。接着,深入探讨了C2000 DSP内部各关键模块(如ADC、DAC、PWM定时器)的具体配置步骤,特别是EPWM模块采用上下计数模式以确保对称波形的生成。此外,还讲解了数字滤波器的设计流程,从MATLAB中的参数设定到最终转换为适用于嵌入式系统的高效C代码。文中强调了硬件在环(HIL)和支持快速原型设计(RCP)的重要性,并分享了一些实际项目中常见的陷阱及解决方案,如PCB布局不当导致的ADC采样异常等问题。最后,针对中断服务程序(ISR)提出了优化建议,避免因ISR执行时间过长而引起的系统不稳定现象。 适合人群:从事电力电子、电机控制系统开发的技术人员,尤其是那些希望深入了解C2000 DSP应用细节的研发工程师。 使用场景及目标:①掌握利用MATLAB/Simulink进行电力电子设备仿真的技巧;②学会正确配置C2000 DSP的各项外设资源;③能够独立完成从理论设计到实际产品落地全过程中的各个环节,包括但不限于数字滤波器设计、PWM信号生成、ADC采样同步等。 其他说明:文中提供了大量实用的代码片段和技术提示,帮助读者更好地理解和实践相关知识点。同时,也提到了一些常见错误案例,有助于开发者规避潜在风险。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值