1、http://poj.org/problem?id=3356
2、题目大意:
给定两个字符串,目的是将第一串转换成和第二串相同的字符串,可以有三种操作,1、可以有增加、删除和改变的操作,删除即如果y中有,x没有,则在同位置y中可以删去,改变是指,x中的字符可以改成跟Y中的字符一样的,求得是最少几步可以将x字符串转换成y字符串
此题类似于求最长公共子序列,状态转移方程为
if(a[i-1]==b[j-1])
dp[i][j]=minn(dp[i-1][j-1],dp[i-1][j]+1,dp[i][j-1]+1);
else
dp[i][j]=minn(dp[i-1][j-1],dp[i-1][j],dp[i][j-1])+1;
题目:
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 7633 | Accepted: 3037 |
Description
Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:
- Deletion: a letter in x is missing in y at a corresponding position.
- Insertion: a letter in y is missing in x at a corresponding position.
- Change: letters at corresponding positions are distinct
Certainly, we would like to minimize the number of all possible operations.
IllustrationA G T A A G T * A G G C | | | | | | | A G T * C * T G A C G CDeletion: * in the bottom line
Insertion: * in the top line
Change: when the letters at the top and bottom are distinct
This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like
A G T A A G T A G G C | | | | | | | A G T C T G * A C G C
and 4 moves would be required (3 changes and 1 deletion).
In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where n ≥ m.
Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.
Write a program that would minimize the number of possible operations to transform any string x into a string y.
Input
The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.
Output
An integer representing the minimum number of possible operations to transform any string x into a string y.
Sample Input
10 AGTCTGACGC 11 AGTAAGTAGGC
Sample Output
4
4、代码:
#include<iostream>
using namespace std;
int minn(int x,int y,int z)
{
if(x>y)
x=y;
if(x>z)
x=z;
return x;
}
int main()
{
int n,m,i,j,dp[1100][1100];
char a[1100],b[1100];
while(cin>>n)
{
for(i=1;i<=n;i++)
cin>>a[i];
cin>>m;
for(j=1;j<=m;j++)
cin>>b[j];
dp[0][0]=0;
int n1=max(n,m);
for(i=1;i<=n1;i++)
dp[i][0]=i;
for(i=1;i<=n1;i++)
dp[0][i]=i;
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
int t1,t2,t3;
t2=dp[i-1][j]+1;//插入
t3=dp[i][j-1]+1;//删除
if(a[i]==b[j])
t1=dp[i-1][j-1];//修改
else
t1=dp[i-1][j-1]+1;//修改
dp[i][j]=minn(t1,t2,t3);
}
}
cout<<dp[n][m]<<endl;
}
return 0;
}
本文介绍了一个经典的字符串编辑距离问题,通过动态规划算法求解两字符串转换所需的最少操作次数,包括插入、删除和替换操作。
538

被折叠的 条评论
为什么被折叠?



