//二叉排序树又称为二叉查找树,它或者是一棵空树,或者是具有下列性质的二叉树:
//若它的左子树不空,则左子树上所有结点的值均小于它的根结构的值。
//若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值。
//它的左右字数也分别是二叉排序树
//二叉排序树查找:
/* 二叉树的二叉链表结点结构定义 */
typedef struct BiTNode /* 结点结构 */
{
int data; /* 结点数据 */
struct BiTNode *lchild, *rchild; /* 左右孩子指针 */
} BiTNode, *BiTree;
/* 递归查找二叉排序树T中是否存在key, */
/* 指针f指向T的双亲,其初始调用值为NULL */
/* 若查找成功,则指针p指向该数据元素结点,并返回TRUE */
/* 否则指针p指向查找路径上访问的最后一个结点并返回FALSE */
Status SearchBST(BiTree T, int key, BiTree f, BiTree *p)
{
if (!T) /* 查找不成功 */
{
*p = f;
printf("查找不成功");
return FALSE;
}
else if (key==T->data) /* 查找成功 */
{
*p = T;
printf("查找成功!!!!");
return TRUE;
}
else if (key<T->data)
return SearchBST(T->lchild, key, T, p); /* 在左子树中继续查找 */
else
return SearchBST(T->rchild, key, T, p); /* 在右子树中继续查找 */
}
/* 当二叉排序树T中不存在关键字等于key的数据元素时, */
/* 插入key并返回TRUE,否则返回FALSE */
Status InsertBST(BiTree *T, int key)
{
BiTree p,s;
if (!SearchBST(*T, key, NULL, &p)) /* 查找不成功 */
{
s = (BiTree)malloc(sizeof(BiTNode));
s->data = key;
s->lchild = s->rchild = NULL;
if (!p)
*T = s; /* 插入s为新的根结点 */
else if (key<p->data)
p->lchild = s; /* 插入s为左孩子 */
else
p->rchild = s; /* 插入s为右孩子 */
return TRUE;
}
else
return FALSE; /* 树中已有关键字相同的结点,不再插入 */
}
/* 若二叉排序树T中存在关键字等于key的数据元素时,则删除该数据元素结点, */
/* 并返回TRUE;否则返回FALSE。 */
Status DeleteBST(BiTree *T,int key)
{
if(!*T) /* 不存在关键字等于key的数据元素 */
return FALSE;
else
{
if (key==(*T)->data) /* 找到关键字等于key的数据元素 */
return Delete(T);
else if (key<(*T)->data)
return DeleteBST(&(*T)->lchild,key);
else
return DeleteBST(&(*T)->rchild,key);
}
}
/* 从二叉排序树中删除结点p,并重接它的左或右子树。 */
Status Delete(BiTree *p)
{
BiTree q,s;
if((*p)->rchild==NULL) /* 右子树空则只需重接它的左子树(待删结点是叶子也走此分支) */
{
q=*p; *p=(*p)->lchild; free(q);
}
else if((*p)->lchild==NULL) /* 只需重接它的右子树 */
{
q=*p; *p=(*p)->rchild; free(q);
}
else /* 左右子树均不空 */
{
q=*p; s=(*p)->lchild;
while(s->rchild) /* 转左,然后向右到尽头(找待删结点的前驱) */
{
q=s;
s=s->rchild;
}
(*p)->data=s->data; /* s指向被删结点的直接前驱(将被删结点前驱的值取代被删结点的值) */
if(q!=*p)
q->rchild=s->lchild; /* 重接q的右子树 */
else
q->lchild=s->lchild; /* 重接q的左子树 */
free(s);
}
return TRUE;
}
//最好的情况是二叉排序树的形态和折半查找的判定树相同,
//其平均查找长度和logn成正比(O(log2(n)))。最坏情况下,
//当先后插入的关键字有序时,构成的二叉排序树为一棵斜树,
//树的深度为n,其平均查找长度为(n + 1) / 2。
//也就是时间复杂度为O(n),等同于顺序查找。
二叉排序树
最新推荐文章于 2024-12-08 08:30:00 发布