Literatures on Deep Learning 关于Deep Learning的一些文章

自2006年Hinton提出深度信念网络以来,深度学习迎来了新的春天。它通过多层次感知器模仿视觉机制,解决了浅层网络和分类器的局限性。本文列举了从2006年至2010年的关键论文,包括减少数据维度的方法、深度网络的快速学习算法等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Recently I engaged in studying Deep Learning, which was motivated by G. E. Hinton from University of Toronto in 2006. The striking paper was A FAST LEARNING ALGORITHM FOR DEEP BELIEF NETS in Neural Computation and a corresonding paper by Hinton appeared on Nature at the same time. Since then, Deep Learning welcomes its new spring.

    Deep Learning is to explore the visual mechanism which employs hierarchical representations in parsing natural scenes from V1,V2,...,V5. Each higher level representation is composed of lower level representations, and thus is more abstract and robust in visual tasks. Deep Learning methods, which make use of multilayer perceptions to imitate the visual mechanism, provide a universal framework for representing complex functions which is the shortcomings of shallower networks or classifiers. Based on these reasons, Deep Learning has been a new frontier in machine learning research.

    Here is a reading list below on Deep Learning since the breakthrough by Hinton.

1. G. E. Hinton,et al..Reducing the dimensionality of data with neural networks. Nature,2006.

2. G. E. Hinton,et al..A Fast Learning Algorithm for Deep Belief Nets. Neural Computaion,2006.

3. Marc' Aurelio Ranzato, Yann LeCun. Efficient Learning of Sparse Representations with an Energy-Based Model. ICML,2007.

4. Yoshua Bengio. Greedy Layer-Wise Training of Deep Networks.ICML,2007.

5. Jason Weston. Deep Learning via Semi-supervised Embedding. ICML,2008.

6. Yoshua Bengio. Learning Deep Architectures for AI. Foundations and Trends in Machine Learning,2009. (Review)

7. Hugo Larochelle,Yoshua Bengio. Exploring Strategies for Training Deep Neural Networks. Journal of Machine Learning Research,2009.

8. Dumitru Erhan,Yoshua Bengio. The Difficulty of Training Deep Architectures and the Effect of Unsupervised Pre-Training. ICML,2009.

9. Pascal Vincent,Yohusa Bengio. Stacked Denoising Autoencoders- Learning Useful Representations in a Deep Network with a Local Denoising Criterion. Journal of Machine Learning Research,2010.

10. Itamar Arel. Deep Machine Learning: A New Friontier in Artificial Interlligence Research. IEEE Computation Intelligence Magazine,2010.

11. Dumitru Erhan,Yoshua Bengio. Why Does Unsupervised Pre-training Help Deep Learning. Journal of Machine Learning Research,2010.

12. Xavier Glorot,Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. AISTATS,2010.

内容概要:该论文聚焦于T2WI核磁共振图像超分辨率问题,提出了一种利用T1WI模态作为辅助信息的跨模态解决方案。其主要贡献包括:提出基于高频信息约束的网络框架,通过主干特征提取分支和高频结构先验建模分支结合Transformer模块和注意力机制有效重建高频细节;设计渐进式特征匹配融合框架,采用多阶段相似特征匹配算法提高匹配鲁棒性;引入模型量化技术降低推理资源需求。实验结果表明,该方法不仅提高了超分辨率性能,还保持了图像质量。 适合人群:从事医学图像处理、计算机视觉领域的研究人员和工程师,尤其是对核磁共振图像超分辨率感兴趣的学者和技术开发者。 使用场景及目标:①适用于需要提升T2WI核磁共振图像分辨率的应用场景;②目标是通过跨模态信息融合提高图像质量,解决传统单模态方法难以克服的高频细节丢失问题;③为临床诊断提供更高质量的影像资料,帮助医生更准确地识别病灶。 其他说明:论文不仅提供了详细的网络架构设计与实现代码,还深入探讨了跨模态噪声的本质、高频信息约束的实现方式以及渐进式特征匹配的具体过程。此外,作者还对模型进行了量化处理,使得该方法可以在资源受限环境下高效运行。阅读时应重点关注论文中提到的技术创新点及其背后的原理,理解如何通过跨模态信息融合提升图像重建效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值