SPSS数据分析网络游戏行业应用范例

本文通过网络游戏注册用户转化为付费用户的案例,介绍了SPSS数据分析在提高营销效率和企业利润中的作用。利用CRISP-DM方法论,从商业理解、数据理解、数据准备、建模、评估到部署,详细阐述了数据挖掘流程,并强调了数据质量和模型迭代的重要性。最终目标是通过数据挖掘提高电话营销的成功率,降低无效营销成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

——网络游戏注册用户转化案例介绍

在网络游戏运营中,如何把注册用户(免费用户)转化成付费用户,是一个非常普遍且现实的问题。在网络游戏试玩初期,游戏运营商为了测试和完善网络游戏以及快速扩大玩家群,通常都会推出一段相对较长的免费试玩期。因此,在网络游戏正式运营前就会存在大量的注册用户,而且这些注册用户会在网络游戏运行后存在很长一段时间。

那么如何把这些注册用户转化成付费客户,真正为游戏运营商带来直观的收益呢?通常市场人员会制定各种营销方式来吸引注册用户成为网络游戏的收费用户,但是市场人员通常并不了解哪些注册用户会对哪种营销方式产生兴趣并产生响应。市场人员往往只能通过广而告知的方法进行营销。这种营销方式的结果就是大量的营销资源被浪费在无效的客户营销中。数据挖掘技术的出现和发展使网络游戏运营商能够对注册用户采取差别化营销,对正确的注册用户采用正确的营销手段,从而提高市场营销活动效率,使企业利润得到最大化。

一、CRISP-DM数据挖掘实施方法论

成功的数据挖掘项目需要有正确的实施方法论来确保项目成功。CRISP-DM挖掘实施方法论(跨行业标准数据挖掘实施方法论)是SPSS公司和NCR公司1990年在德国克莱斯勒公司共同实施数据挖掘项目时制定的。截至目前为止,全球有60%以上的数据挖掘项目都是采用该数据挖掘方法论进行实施。

CRISP-DM数据挖掘实施方法论帮助企业把注意力集中在解决业务问题本身,而不是技术层面上。CRISP-DM流程模型包括了六个步骤,涵盖了数据挖掘的整个过程,它们是:

1、商业理解Business understanding

这一初始阶段集中在从商业角度理解项目的目标和要求,然后把理解转化为数据挖掘问题,并制定出一个旨在实现目标的初步计划。

2、数据理解Data understanding

数据理解阶段开始于原始数据的收集,接下来进行的活动是熟悉数据、识别数据质量问题、探索对数据的第一认识,或挖掘有深层含义的数据子集来形成对隐藏信息的假设。

3、数据准备Data preparation

数据准备阶段包括所有从原始未加工的数据构造最终数据集的活动(这些数据集是指将要嵌入建模工具中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值