1062 最简分数 (20分)

本文介绍了一种算法,用于找出两个给定正分数之间,所有分母为特定值的最简分数,并按升序排列。使用辗转相除法计算最大公约数,确保找到的分数为最简形式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1062 最简分数 (20分)

一个分数一般写成两个整数相除的形式:N/M,其中 M 不为0。最简分数是指分子和分母没有公约数的分数表示形式。

现给定两个不相等的正分数 N​1​​/M​1​​ 和 N​2​​/M​2​​,要求你按从小到大的顺序列出它们之间分母为 K 的最简分数。

输入格式:

输入在一行中按 N/M 的格式给出两个正分数,随后是一个正整数分母 K,其间以空格分隔。题目保证给出的所有整数都不超过 1000。

输出格式:

在一行中按 N/M 的格式列出两个给定分数之间分母为 K 的所有最简分数,按从小到大的顺序,其间以 1 个空格分隔。行首尾不得有多余空格。题目保证至少有 1 个输出。

输入样例:

7/18 13/20 12

输出样例:

5/12 7/12

 分析:使⽤用辗转相除法gcd计算a和b的⼤大公约数,因为要列列出n1/m1和n2/m2之间的简分数,但是 n1/m1不不⼀一定⼩小于n2/m2,所以如果n1 * m2 > n2 * m1,说明n1/m1⽐比n2/m2⼤大,则调换n1和n2、m1和 m2的位置~假设所求的分数分⺟母为k、分⼦子num,先令num=1,当n1 * k >= m1 * num时,num不不断 ++,直到num符合n1/m1 < num/k为⽌止~然后在n1/m1和n2/m2之间找符合条件的num的值,⽤用 gcd(num, k)是否等于1判断num和k是否有⼤大公约数,如果等于1表示没有⼤大公约数,就输出 num/k,然后num不不断++直到退出循环~

#include<bits/stdc++.h>
using namespace std;
int gcd(int a,int b)
{
    return b==0?a:gcd(b,a%b);
}
int main()
{
    int a1,a2,m1,m2,x;
    scanf("%d/%d %d/%d %d",&a1,&m1,&a2,&m2,&x);
    if(a1*m2>a2*m1)
    {
        swap(a1,a2);
        swap(m1,m2);
    }
    int num=1;
    while(a1*x>=num*m1)num++;
    int flas=0;
    while(a1*x<num*m1&&num*m2<a2*x)
    {
        if(gcd(x,num)==1)
        {
            printf("%s%d/%d",flas==1?" ":"",num,x);
            flas=1;
        }
        num++;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值