- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
J6周有一段代码如下
思考过程
- 首先看到这个问题的描述,想到的是可能使用了向量操作的广播机制
- 然后就想想办法验证一下,想到直接把J6的tensorflow代码跑一遍
- 通过model.summary打印了模型的所有层的信息,并把信息处理成方便查看(去掉分组卷积的一大堆层)
- 发现通道数一致,并不是使用了广播机制
- 仔细分析模型的过程,得出解释
验证过程
summary直接打印的内容,(太大只能贴出部分)
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_4 (InputLayer) [(None, 224, 224, 3)] 0 []
zero_padding2d_6 (ZeroPadd (None, 230, 230, 3) 0 ['input_4[0][0]']
ing2D)
conv2d_555 (Conv2D) (None, 112, 112, 64) 9472 ['zero_padding2d_6[0][0]']
batch_normalization_59 (Ba (None, 112, 112, 64) 256 ['conv2d_555[0][0]']
tchNormalization)
re_lu_53 (ReLU) (None, 112, 112, 64) 0 ['batch_normalization_59[0][0]
']
zero_padding2d_7 (ZeroPadd (None, 114, 114, 64) 0 ['re_lu_53[0][0]']
ing2D)
max_pooling2d_3 (MaxPoolin (None, 56, 56, 64) 0 ['zero_padding2d_7[0][0]']
g2D)
conv2d_557 (Conv2D) (None, 56, 56, 128) 8192 ['max_pooling2d_3[0][0]']
batch_normalization_61 (Ba (None, 56, 56, 128) 512 ['conv2d_557[0][0]']
tchNormalization)
re_lu_54 (ReLU) (None, 56, 56, 128) 0 ['batch_normalization_61[0][0]
']
lambda_514 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_515 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_516 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_517 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_518 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_519 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_520 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_521 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_522 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_523 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_524 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_525 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_526 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_527 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_528 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_529 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_530 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_531 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_532 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_533 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_534 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_535 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_536 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_537 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_538 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_539 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_540 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_541 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_542 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_543 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_544 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
lambda_545 (Lambda) (None, 56, 56, 4) 0 ['re_lu_54[0][0]']
conv2d_558 (Conv2D) (None, 56, 56, 4) 144 ['lambda_514[0][0]']
conv2d_559 (Conv2D) (None, 56, 56, 4) 144 ['lambda_515[0][0]']
conv2d_560 (Conv2D) (None, 56, 56, 4) 144 ['lambda_516[0][0]']
conv2d_561 (Conv2D) (None, 56, 56, 4) 144 ['lambda_517[0][0]']
conv2d_562 (Conv2D) (None, 56, 56, 4) 144 ['lambda_518[0][0]']
conv2d_563 (Conv2D) (None, 56, 56, 4) 144 ['lambda_519[0][0]']
conv2d_564 (Conv2D) (None, 56, 56, 4) 144 ['lambda_520[0][0]']
conv2d_565 (Conv2D) (None, 56, 56, 4) 144 ['lambda_521[0][0]']
conv2d_566 (Conv2D) (None, 56, 56, 4) 144 ['lambda_522[0][0]']
conv2d_567 (Conv2D) (None, 56, 56, 4) 144 ['lambda_523[0][0]']
conv2d_568 (Conv2D) (None, 56, 56, 4) 144 ['lambda_524[0][0]']
conv2d_569 (Conv2D) (None, 56, 56, 4) 144 ['lambda_525[0][0]']
conv2d_570 (Conv2D) (None, 56, 56, 4) 144 ['lambda_526[0][0]']
conv2d_571 (Conv2D) (None, 56, 56, 4) 144 ['lambda_527[0][0]']
conv2d_572 (Conv2D) (None, 56, 56, 4) 144 ['lambda_528[0][0]']
conv2d_573 (Conv2D) (None, 56, 56, 4) 144 ['lambda_529[0][0]']
conv2d_574 (Conv2D) (None, 56, 56, 4) 144 ['lambda_530[0][0]']
conv2d_575 (Conv2D) (None, 56, 56, 4) 144 ['lambda_531[0][0]']
conv2d_576 (Conv2D) (None, 56, 56, 4) 144 ['lambda_532[0][0]']
conv2d_577 (Conv2D) (None, 56, 56, 4) 144 ['lambda_533[0][0]']
conv2d_578 (Conv2D) (None, 56, 56, 4)