pyorch 训练分类网络的流程

本文详细介绍如何使用PyTorch框架进行Fashion-MNIST图片数据集的准备、训练和测试过程。从数据加载、模型创建到训练与验证,文章提供了一套完整的代码实现,适合初学者理解和实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 准备、训练和测试自己的图片数据

这里使用的是fashion-mnist。这个数据比较小,关于fashion-mnist数据,可以百度,也可以 点此 了解一下,数据如下图所示:

下载地址:https://github.com/zalandoresearch/fashion-mnist

训练流程主要分为以下几个步骤:加载数据,训练模型,测试模型,demo别如下:

(1)加载数据:

这样就会在e:/fashion_mnist/目录下分别生成train和test文件夹,用于存放图片。还在该目录下生成了标签文件train.txt和test.txt.

2.这里训练与测试模块写在一起,demo如下:

import torch
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
root="E:/fashion_mnist/"

# -----------------ready the dataset--------------------------
def default_loader(path):
    return Image.open(path).convert('RGB')
class MyDataset(Dataset):
    def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
        fh = open(txt, 'r')
        imgs = []
        for line in fh:
            line = line.strip('\n')
            line = line.rstrip()
            words = line.split()
            imgs.append((words[0],int(words[1])))
        self.imgs = imgs
        self.transform = transform
        self.target_transform = target_transform
        self.loader = loader

    def __getitem__(self, index):
        fn, label = self.imgs[index]
        img = self.loader(fn)
        if self.transform is not None:
            img = self.transform(img)
        return img,label

    def __len__(self):
        return len(self.imgs)

train_data=MyDataset(txt=root+'train.txt', transform=transforms.ToTensor())
test_data=MyDataset(txt=root+'test.txt', transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=64)


#-----------------create the Net and training------------------------

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Sequential(
            torch.nn.Conv2d(3, 32, 3, 1, 1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(2))
        self.conv2 = torch.nn.Sequential(
            torch.nn.Conv2d(32, 64, 3, 1, 1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(2)
        )
        self.conv3 = torch.nn.Sequential(
            torch.nn.Conv2d(64, 64, 3, 1, 1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(2)
        )
        self.dense = torch.nn.Sequential(
            torch.nn.Linear(64 * 3 * 3, 128),
            torch.nn.ReLU(),
            torch.nn.Linear(128, 10)
        )

    def forward(self, x):
        conv1_out = self.conv1(x)
        conv2_out = self.conv2(conv1_out)
        conv3_out = self.conv3(conv2_out)
        res = conv3_out.view(conv3_out.size(0), -1)
        out = self.dense(res)
        return out


model = Net()
print(model)

optimizer = torch.optim.Adam(model.parameters())
loss_func = torch.nn.CrossEntropyLoss()

for epoch in range(10):
    print('epoch {}'.format(epoch + 1))
    # training-----------------------------
    train_loss = 0.
    train_acc = 0.
    for batch_x, batch_y in train_loader:
        batch_x, batch_y = Variable(batch_x), Variable(batch_y)
        out = model(batch_x)
        loss = loss_func(out, batch_y)
        train_loss += loss.data[0]
        pred = torch.max(out, 1)[1]
        train_correct = (pred == batch_y).sum()
        train_acc += train_correct.data[0]
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len(
        train_data)), train_acc / (len(train_data))))

    # evaluation--------------------------------
    model.eval()
    eval_loss = 0.
    eval_acc = 0.
    for batch_x, batch_y in test_loader:
        batch_x, batch_y = Variable(batch_x, volatile=True), Variable(batch_y, volatile=True)
        out = model(batch_x)
        loss = loss_func(out, batch_y)
        eval_loss += loss.data[0]
        pred = torch.max(out, 1)[1]
        num_correct = (pred == batch_y).sum()
        eval_acc += num_correct.data[0]
    print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
        test_data)), eval_acc / (len(test_data))))

模型打印如下:

模型训练与验证过程如下:

基本上pytorch基础网络大多基于以上三步,唯一不同的是加载数据的方式不同,后面再做个总结。

参考文献:https://www.cnblogs.com/denny402/p/7520063.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值