菜鸟nginx源码剖析数据结构篇(四)红黑树ngx_rbtree_t

本文深入剖析了nginx源码中用于高效数据管理的红黑树数据结构ngx_rbtree_t,详细解释了其节点颜色规则、插入和删除操作,帮助读者更好地理解nginx的内部实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

菜鸟nginx源码剖析数据结构篇(四)红黑树ngx_rbtree_t

 

  • Author:Echo Chen(陈斌)

  • Email:chenb19870707@gmail.com

  • Blog:Blog.youkuaiyun.com/chen19870707

  • Date:October 27h, 2014

     

     

    1.ngx_rbtree优势和特点

     

        ngx_rbtree是一种使用红黑树实现的关联容器,关于红黑树的特性,在《手把手实现红黑树》已经详细介绍,这里就只探讨ngx_rbtree与众不同的地方;ngx_rbtree红黑树容器中的元素都是有序的,支持快速索引,插入,删除操作,也支持范围查询,遍历操作,应用非常广泛。

     

    2.源代码位置

     

    头文件:http://trac.nginx.org/nginx/browser/nginx/src/core/ngx_rbtree.h

    源文件:http://trac.nginx.org/nginx/browser/nginx/src/core/ngx_rbtree.c

     

    3.数据结构定义

     

    可以看到ngx_rbtree的结点ngx_rbtree_node_t结构跟一般的红黑树差不多,都是由键值key、左孩子left、右孩子right、父亲结点parent、颜色值color,不同的是ngx_rbtree_node_t这里多了一个data,但根据官方文档记在,由于data只有一个字节,表示太少,很少使用到

       1: typedef struct ngx_rbtree_node_s  ngx_rbtree_node_t;
       2:  
       3: struct ngx_rbtree_node_s {
         
         
       4:     ngx_rbtree_key_t       key;
       5:     ngx_rbtree_node_t     *left;
       6:     ngx_rbtree_node_t     *right;
       7:     ngx_rbtree_node_t     *parent;
       8:     u_char                 color;
       9:     u_char                 data;
      10: };

     

    ngx_rbtree_t的结构也与一般红黑树相同,右root结点和哨兵叶子结点(sentinel)组成,不同的是这里多了一个 函数指针inserter,它决定了在添加结点是新加还是替换。

     

       1: typedef struct ngx_rbtree_s  ngx_rbtree_t;
       2:  
       3: typedef void (*ngx_rbtree_insert_pt) (ngx_rbtree_node_t *root,
       4:     ngx_rbtree_node_t *node, ngx_rbtree_node_t *sentinel);
       5:  
       6: struct ngx_rbtree_s {
         
         
       7:     ngx_rbtree_node_t     *root;
       8:     ngx_rbtree_node_t     *sentinel;
       9:     ngx_rbtree_insert_pt   insert;
      10: };

     

    4.ngx_rbtree初始化 ngx_rbtree_init

     

    其中tree为ngx_rbtree_t类型,即为红黑树,s为ngx_rbtree_node_t,是rbtree的根节点,i即为上节提到的决定插入是新结点还是替换的函数指针。首先将根节点涂成 黑色(红黑树基本性质),然后把 红黑树的 根节点和 哨兵结点 都指向这个结点。

     

       1: #define ngx_rbtree_init(tree, s, i)                                           \
       2:     ngx_rbtree_sentinel_init(s);                                              \
       3:     (tree)->root = s;                                                         \
       4:     (tree)->sentinel = s;                                                     \
       5:     (tree)->insert = i
       6:  
       7: #define ngx_rbtree_sentinel_init(node)  ngx_rbt_black(node)

     

    5.ngx_rbtree 左旋 ngx_rbtree_left_rotate 和 右旋 ngx_rbtree_right_rotate

     

    可以看到,经典代码总是永恒的,ngx_rbtree的左旋右旋也是参考《算法导论》导论中的步骤和伪代码,对照我自己的实现的《手把手实现红黑树》,与我自己实现的左旋右旋代码基本一致,我图解了详细的过程,有不清楚的可以参考《手把手实现红黑树》。

     

       1: static ngx_inline void
       2: ngx_rbtree_left_rotate(ngx_rbtree_node_t **root, ngx_rbtree_node_t *sentinel,
       3:     ngx_rbtree_node_t *node)
       4: {
         
         
       5:     ngx_rbtree_node_t  *temp;
       6:  
       7:     temp = node->right;
       8:     node->right = temp->left;
       9:  
      10:     if (temp->left != sentinel) {
         
         
      11:         temp->left->parent = node;
      12:     }
      13:  
      14:     temp->parent = node->parent;
      15:  
      16:     if (node == *root) {
         
         
      17:         *root = temp;
      18:  
      19:     } else if (node == node->parent->left) {
         
         
      20:         node->parent->left = temp;
      21:  
      22:     } else {
         
         
      23:         node->parent->right = temp;
      24:     }
      25:  
      26:     temp->left = node;
      27:     node->parent = temp;
      28: }

       1: static ngx_inline void
       2: ngx_rbtree_right_rotate(ngx_rbtree_node_t **root, ngx_rbtree_node_t *sentinel,
       3:     ngx_rbtree_node_t *node)
       4: {
         
         
       5:     ngx_rbtree_node_t  *temp;
       6:  
       7:     temp = node->left;
       8:     node->left = temp->right;
<think>嗯,用户现在问的是Nginx的高级数据结构,特别是ngx_queue_t的用途。之前用户已经询问过关于request_pool_size销毁的原因,可能现在想深入了解Nginx内部的实现机制。我需要先回忆一下ngx_queue_t的相关知识。 首先,ngx_queue_t是Nginx中一个双向链表的实现。用户可能想知道为什么Nginx要自己实现这样的数据结构,而不是使用C语言标准库里的结构。这可能涉及到性能优化、内存管理或者跨平台兼容性的问题。 接着,用户可能对具体的使用场景感兴趣。比如在HTTP模块中,Nginx如何处理请求,哪些部分会用到这种链表结构。需要举一些例子,比如维护定时事件、管理HTTP请求等,说明ngx_queue_t的实际应用。 另外,用户可能想了解这种数据结构的特点,比如轻量级、不侵入数据结构的实现方式。需要解释侵入式和非侵入式链表的区别,以及为什么Nginx选择这种方式。可能还要提到内存管理的优势,比如内存池的配合使用,减少内存碎片。 还要考虑用户可能的疑问,比如与其他数据结构红黑树的区别。这时候需要指出链表和树的不同应用场景,比如链表适合频繁插入删除,而红黑树适合快速查找。说明Nginx如何根据不同的需求选择不同的数据结构。 另外,用户可能对如何在自己的模块中使用ngx_queue_t感兴趣,可能需要简单的代码示例,但用户问题中没有明确要求,所以可能不需要详细代码,但可以简要说明其使用方式,比如初始化、插入节点等步骤。 最后,总结ngx_queue_t的优势,比如高效、灵活、节省内存,以及为什么在Nginx中这样的设计是合理的,适合高并发场景的需求。同时确保回答结构清晰,符合之前用户要求的层次分明的格式,比如分点说明用途、设计特点、优势比较等。</think>Nginx 内部设计了许多高效的自定义数据结构以适配高并发场景,`ngx_queue_t` 是其中一种双向链表的实现,其核心价值在于**轻量级、无侵入、内存友好**的设计。以下是其关键用途与设计逻辑: --- ### 一、`ngx_queue_t` 的核心用途 1. **轻量级链表操作** - 用于需要频繁插入、删除但无需复杂查找的场景(如定时器事件管理、HTTP 请求阶段处理器链)。 - 示例: - 维护超时事件(`ngx_event_timer_rbtree` 结合红黑树和队列管理)。 - HTTP 请求处理阶段(`phase_engine` 中按顺序调用各阶段处理函数)。 2. **无侵入式设计** - 链表节点(`ngx_queue_t`)**不嵌入业务数据结构**,而是通过指针关联,避免强制耦合。 例如: ```c typedef struct { ngx_queue_t queue; // 链表节点 void *data; // 实际业务数据指针 } ngx_custom_node_t; ``` - 优势:同一业务结构可同时加入多个链表,灵活性高。 3. **内存池友好** - 节点内存通常从 Nginx 的 `ngx_pool_t` 内存池分配,生命周期与请求或连接绑定,避免内存泄漏。 --- ### 二、`ngx_queue_t` 的设计特点 1. **极简结构体** 仅包含前驱(`prev`)和后继(`next`)指针,无额外开销: ```c typedef struct ngx_queue_s ngx_queue_t; struct ngx_queue_s { ngx_queue_t *prev; ngx_queue_t *next; }; ``` 2. **高效操作宏** 提供宏直接操作链表,避免函数调用开销(如 `ngx_queue_insert_head`、`ngx_queue_remove`)。 3. **与红黑树互补** - **`ngx_queue_t`**:适合顺序遍历或频繁增删。 - **`ngx_rbtree_t`**:适合快速查找(如定时器、共享内存键值存储)。 - 两者常结合使用(例如定时器用红黑树管理超时时间,用队列维护活跃事件)。 --- ### 三、对比传统链表的优势 | 特性 | `ngx_queue_t` | 传统链表(如 Linux 内核 `list_head`) | |---------------------|--------------------------------|--------------------------------------| | **内存占用** | 更小(仅 2 指针) | 类似 | | **数据耦合** | 无侵入式 | 通常需嵌入结构体 | | **多链表支持** | 通过指针关联,灵活 | 需预先定义嵌入节点 | | **内存管理** | 深度整合 Nginx 内存池 | 依赖外部分配机制 | --- ### 、典型应用场景 1. **HTTP 请求处理链** 各处理阶段(如 `NGX_HTTP_SERVER_REWRITE_PHASE`)通过链表串联处理函数。 2. **事件定时器** 超时事件按时间排序存入红黑树,活跃事件通过队列管理。 3. **模块配置合并** 多个模块的配置指令通过链表合并(如 `listen` 指令的 `ngx_listening_t` 列表)。 --- ### 五、使用示例(伪代码) ```c // 定义业务数据结构 typedef struct { int id; ngx_queue_t link; // 链表节点 } ngx_custom_data_t; // 初始化链表 ngx_queue_t head; ngx_queue_init(&head); // 插入节点 ngx_custom_data_t *node = ngx_palloc(pool, sizeof(ngx_custom_data_t)); node->id = 100; ngx_queue_insert_tail(&head, &node->link); // 遍历链表 ngx_queue_t *q; for (q = ngx_queue_head(&head); q != ngx_queue_sentinel(&head); q = ngx_queue_next(q)) { ngx_custom_data_t *data = ngx_queue_data(q, ngx_custom_data_t, link); // 处理 data->id } ``` --- ### 总结 `ngx_queue_t` 是 Nginx 为高并发场景量身定制的双向链表,其**无侵入、低开销、内存池集成**的特性,使其在事件管理、请求处理等核心流程中成为高效的基础设施。与红黑树等结构配合,共同支撑 Nginx 的高性能架构。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值