Given these 80 observed samples, the set of length-256 signals that have samples that match our observations is an affine subspace of dimension 256-80=176. From the candidate signals in this set, we choose the one whose DFT has minimum L1 norm; that is, the sum of the magnitudes of the Fourier transform is the smallest.
信号(经过DFT后)256个成分,且大部分sparse的。对它进行80次采样,这样长度为256的信号集 中符合我们采样观测的那些信号可以看作是176维的仿射空间,从余下的信号集中选择一个其DFT(系数)符合L1最小 min(|y|l1),这样可重构原始信号。
In general, if there are B sinusoids in the signal, we will be able to recover using L1 minimization from on the order of B log N samples 。
通常,如果信号(大小)B,可以用min L1恢复 Blog(N) 的信号,换句话说,最小要这么多采样才能恢复。
The framework is easily extended to more general types of measurements (in place of time-domain samples), and more general types of sparsity (rather than sparisty in the frequency domain). Suppose that instead of taking K samples in the time domain, we project the signal onto a randomly chosen K dimensional subspace. Then if f is B sparse is a known orthobasis, and K is on the order of B log N, f can be recovered without error by solving an l1 minimization problem.
这种思想可扩展到别的地方。比如时域以外的测量,频域以外的sparisty。如果先把信号投影到一个随机选择的K维子空间,f是 在一个已知的正交基上B-sparse信号,K~Blog(N),那么通过解决min L1可无错恢复f。
本文探讨了信号处理中利用L1最小化方法从部分采样数据中精确重构信号的技术。若信号由B个正弦波组成,在频域中稀疏表示,则仅需约BlogN个样本即可实现准确恢复。此外,还介绍了该理论如何应用于更广泛的测量类型及不同类型的稀疏性。
2377

被折叠的 条评论
为什么被折叠?



