| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 10700 | Accepted: 3117 |
Description
To repair the truck, the cows need to drive to the nearest town (no more than 1,000,000 units distant) down a long, winding road. On this road, between the town and the current location of the truck, there are N (1 <= N <= 10,000) fuel stops where the cows can stop to acquire additional fuel (1..100 units at each stop).
The jungle is a dangerous place for humans and is especially dangerous for cows. Therefore, the cows want to make the minimum possible number of stops for fuel on the way to the town. Fortunately, the capacity of the fuel tank on their truck is so large that there is effectively no limit to the amount of fuel it can hold. The truck is currently L units away from the town and has P units of fuel (1 <= P <= 1,000,000).
Determine the minimum number of stops needed to reach the town, or if the cows cannot reach the town at all.
Input
* Lines 2..N+1: Each line contains two space-separated integers describing a fuel stop: The first integer is the distance from the town to the stop; the second is the amount of fuel available at that stop.
* Line N+2: Two space-separated integers, L and P
Output
Sample Input
4 4 4 5 2 11 5 15 10 25 10
Sample Output
2
Hint
The truck is 25 units away from the town; the truck has 10 units of fuel. Along the road, there are 4 fuel stops at distances 4, 5, 11, and 15 from the town (so these are initially at distances 21, 20, 14, and 10 from the truck). These fuel stops can supply up to 4, 2, 5, and 10 units of fuel, respectively.
OUTPUT DETAILS:
Drive 10 units, stop to acquire 10 more units of fuel, drive 4 more units, stop to acquire 5 more units of fuel, then drive to the town.
Source
题目大意:
最初有P升油的一辆车从起点出发,途径一些加油站,每一个加油站都有离终点的距离和可以加的油量。给定起点与终点的距离L,还有最初的油量P,求最少在多少个加油站加油可以走到终点,没有方案输出-1
解题思路:
这道题我开始想的是一个01背包,dp[i][j]表示经过第i个加油站后油量>=j的最小加油次数,但是数据是1e6个加油站,dp的时间复杂度太高。
后来又玩命想,想到了图论中一道叫做watermelon的一道题,每一个加油站能覆盖哪个加油站就向哪个加油站连一条1的边求最短路。但是这道题不是到一个站之前的油就废了,和watermelon题意不同,所以也不能用图论。
那怎么办呢,看数据是一个nlogn的题。什么是nlogn的?排序是,排序和贪心又经常一起用,所以我绕了一会想到了贪心。
自己想了一些贪心策略,先想找全局最大的加,有反例否了,后来想找走完p之后再加p之前的最大的那个,没想到堆,不完善,最后想到正确思路:
按加油站距起始位置从小到大排序,当前油量p能到的加油站里选择最大油量的加油站加,加到p>=L为止。选择加油站里最大油量的用优先队列,因为p能走到的加油站里是一定要选至少一个的,要不然走不下去了,那我就选最大,这样方案就可以做了。
ps:2016北邮新生赛H题即为这题
#include<stdio.h>
#include<queue>
#include<algorithm>
using namespace std;
struct node{int d,x;}a[1000005];
priority_queue<int>q;
int cmp(node a,node b)
{
return a.d>b.d;
}
int main()
{
int n,cnt=0,l,p;
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d%d",&a[i].d,&a[i].x);
sort(a,a+n,cmp);
scanf("%d%d",&l,&p);
int pos=0;
while(p<l)
{
while(pos<n&&l-a[pos].d<=p)
{
q.push(a[pos].x);
pos++;
}
if(q.empty()) {printf("-1\n");return 0;}
p+=q.top();
q.pop();
cnt++;
}
printf("%d\n",cnt);
}

博客介绍了如何运用优先队列和贪心策略解决poj 2431 Expedition问题。该问题涉及一辆车从起点出发,途经多个加油站,需要确定最少加油次数以到达终点。由于01背包和图论方法不适合,作者提出按加油站距离排序,利用贪心策略选取能到达的加油站中油量最多的进行加油,直至油量足以抵达终点。此方法适用于nlogn级别的数据规模。
675

被折叠的 条评论
为什么被折叠?



