Ito 1
如果F是关于随机变量X的函数(其中t是隐式呈现的),比如F=X2,F=eXF=X^2,F=e^XF=X2,F=eX等等,则根据Ito 1有随机微分:
dF=dFdXdX+12d2FdX2dtdF=\frac{dF}{dX}dX+\frac{1}{2}\frac{d^2F}{dX^2}dtdF=dXdFdX+21dX2d2Fdt
注意:
- dFdX\frac{dF}{dX}dXdF和d2FdX2\frac{d^2F}{dX^2}dX2d2F都是通过普通微分求导的方法得到,代入式中即可。其余的Ito也是一样。
- 不需要考虑dXdt\frac{dX}{dt}dtdX(不适用链式法则),是因为X处处连续,处处不可导。dXdt\frac{dX}{dt}dtdX并不存在。
Ito 2
如果F是关于随机变量X的函数(其中t是显式呈现的),比如F=t2+Xt2F=t^2+X_t^2F=t2+Xt2等,则需要进行二维的泰勒展开:
令t→t+dt,Xt→Xt+dXtt\rightarrow t+dt,X_t\rightarrow X_t+dX_tt→t+dt,Xt→Xt+dXt
F(t+dt,X+dX)=F(t,X)+∂F∂tdt+∂F∂XdX+12∂2F∂X2dX2+...F(t+dt,X+dX)=F(t,X)+\frac{\partial F}{\partial t}dt+\frac{\partial F}{\partial X}dX+\frac{1}{2}\frac{\partial^2F}{\partial X^2}dX^2+...F(t+dt,X+dX)=F(t,X)+∂t∂Fdt+∂X∂FdX+21∂X2∂2FdX2+...
⇒dF=∂F∂XdX+(∂F∂t+12∂2F∂X2)dt\Rightarrow dF=\frac{\partial F}{\partial X}dX+(\frac{\partial F}{\partial t}+\frac{1}{2}\frac{\partial^2F}{\partial X^2})dt⇒dF=∂X∂FdX+(∂t∂F+21∂X2∂2F)dt
伊藤积分(对随机项的积分)
-
从Ito 1开始
∫0t∂F∂XsdXs=F(t,Xt)−F(0,X0)−12∫0t∂2F∂Xs2ds\int^t_0\frac{\partial F}{\partial X_s}dX_s=F(t,X_t)-F(0,X_0)-\frac{1}{2}\int_0^t\frac{\partial^2F}{\partial X^2_s}ds∫0t∂Xs∂FdXs=F(t,Xt)−F(0,X0)−21∫0t∂Xs2∂2Fds
-
从Ito 2开始
∫0t∂F∂XsdXs=F(t,Xt)−F(0,X0)−∫0t(∂F∂s+12∂2F∂Xs2ds)\int^t_0\frac{\partial F}{\partial X_s}dX_s=F(t,X_t)-F(0,X_0)-\int_0^t(\frac{\partial F}{\partial s}+\frac{1}{2}\frac{\partial^2F}{\partial X^2_s}ds)∫0t∂Xs∂FdXs=F(t,Xt)−F(0,X0)−∫0t(∂s∂F+21∂Xs2∂2Fds)
Ito 3
随机变量S是满足几何布朗运动(dS=uSdt+σSdXdS=uSdt+\sigma SdXdS=uSdt+σSdX),要看S的函数V的随机微分方程是什么样的(时间t是隐式呈现的),则需要利用Ito 3.
根据伊藤乘法表可知:dS2=(adt+bdX)2=b2dtdS^2=(adt+bdX)^2=b^2dtdS2=(adt+bdX)2=b2dt,即dS2=σ2S2dtdS^2=\sigma^2S^2dtdS2=σ2S2dt
V(S+dS)≈V(S)+dVdSdS+12d2VdS2dS2V(S+dS)\approx V(S)+\frac{dV}{dS}dS+\frac{1}{2}\frac{d^2V}{dS^2}dS^2V(S+dS)≈V(S)+dSdVdS+21dS2d2VdS2
将V(S)V(S)V(S)移到等是左边,将dSdSdS和dS2dS^2dS2的表达式代入,可得
dV=dVdS(μSdt+σSdX)+12d2VdS2σ2S2dtdV=\frac{dV}{dS}(\mu Sdt+\sigma SdX)+\frac{1}{2}\frac{d^2V}{dS^2}\sigma^2S^2dtdV=dSdV(μSdt+σSdX)+21dS2d2Vσ2S2dt
=(μSdVdS+12σ2S2d2VdS2)+σSdVdSdX=(\mu S\frac{dV}{dS}+\frac{1}{2}\sigma^2S^2\frac{d^2V}{dS^2})+\sigma S\frac{dV}{dS}dX=(μSdSdV+21σ2S2dS2d2V)+σSdSdVdX
使用场景:当你遇到一个随机变量的函数,而这个随机变量刚好满足几何布朗运动,则使用Ito 3写出函数的随机微分方程。最常见的服从几何布朗运动的随机变量,就是证券价格S。
Ito 4
随机变量S是满足几何布朗运动(dS=uSdt+σSdXdS=uSdt+\sigma SdXdS=uSdt+σSdX),要看S的函数V的随机微分方程是什么样的,则需要利用Ito 4。V中的t是显式呈现的(比如:V=t2+S2;V=teS;V=t2+logSV=t^2+S^2;V=te^S;V=t^2+logSV=t2+S2;V=teS;V=t2+logS),即:V=V(t,S),S→GBMV=V(t,S),S\rightarrow GBMV=V(t,S),S→GBM
V(t+dt,S+dS)=V(t,S)+∂V∂tdt+∂V∂SdS+12∂2V∂S2dS2V(t+dt,S+dS)=V(t,S)+\frac{\partial V}{\partial t}dt+\frac{\partial V}{\partial S}dS+\frac{1}{2}\frac{\partial^2V}{\partial S^2}dS^2V(t+dt,S+dS)=V(t,S)+∂t∂Vdt+∂S∂VdS+21∂S2∂2VdS2
其中:dS=μSdt,dS2=σ2S2dtdS=\mu Sdt,dS^2=\sigma^2S^2dtdS=μSdt,dS2=σ2S2dt,代入上式,得到:
dV=(∂V∂t+μS∂V∂S+12σ2S2∂2V∂S2)dt+σS∂V∂SdXdV=(\frac{\partial V}{\partial t}+\mu S\frac{\partial V}{\partial S}+\frac{1}{2}\sigma^2S^2\frac{\partial^2V}{\partial S^2})dt+\sigma S\frac{\partial V}{\partial S}dXdV=(∂t∂V+μS∂S∂V+21σ2S2∂S2∂2V)dt+σS∂S∂VdX
Ito 5
针对多因子模型的Ito。有相关性的随机游走。
比如:两只股票的价格S1,S2S_1,S_2S1,S2,价格的SDE形式为:dSi=μiSidt+σiSidXidS_i=\mu_iS_idt+\sigma_iS_idX_idSi=μiSidt+σiSidXi,可知:
dSi2=σ2Si2dtdS^2_i=\sigma^2S^2_idtdSi2=σ2Si2dt
dS1dS2=ρσ1σ2S1S2dtdS_1dS_2=\rho\sigma_1\sigma_2S_1S_2dtdS1dS2=ρσ1σ2S1S2dt
E[dX1dX2]=ρdtE[dX_1dX_2]=\rho dtE[dX1dX2]=ρdt
关于S和t的函数形式为:V=V(t,S1,S2)V=V(t,S_1,S_2)V=V(t,S1,S2),时间t是显示存在的。做三维泰勒展开可得:
V(t+dt,S1+dS1,S2+dS2)=V(t,S1,S2)+∂V∂tdt+∂V∂S1dS1+∂V∂S2dS2+12∂2V∂S12dS12+12∂2V∂S22dS22+∂2V∂S1∂S2dS1dS2V(t+dt,S_1+dS_1,S_2+dS_2)=V(t,S_1,S_2)+\frac{\partial V}{\partial t}dt+\frac{\partial V}{\partial S_1}dS_1+\frac{\partial V}{\partial S_2}dS_2+\frac{1}{2}\frac{\partial^2V}{\partial S^2_1}dS^2_1+\frac{1}{2}\frac{\partial^2V}{\partial S^2_2}dS^2_2+\frac{\partial^2V}{\partial S_1\partial S_2}dS_1dS_2V(t+dt,S1+dS1,S2+dS2)=V(t,S1,S2)+∂t∂Vdt+∂S1∂VdS1+∂S2∂VdS2+21∂S12∂2VdS12+21∂S22∂2VdS22+∂S1∂S2∂2VdS1dS2
将前面的dSi,dSi2,dS1dS2dS_i,dS^2_i,dS_1dS_2dSi,dSi2,dS1dS2代入上式,移项后可得:
dV=(∂V∂t+μ1S1∂V∂S1+μ2S2∂V∂S2+12σ12S12∂2V∂S12+12σ22S22∂2V∂S22+ρσ1σ2S1S2∂2V∂S1∂S2)dt+σ1S1∂V∂S1dX1+σ2S2∂V∂S2dX2dV=(\frac{\partial V}{\partial t}+\mu_1S_1\frac{\partial V}{\partial S_1}+\mu_2S_2\frac{\partial V}{\partial S_2}+\frac{1}{2}\sigma^2_1S^2_1\frac{\partial^2V}{\partial S^2_1}+\frac{1}{2}\sigma^2_2S^2_2\frac{\partial^2V}{\partial S^2_2}+\rho\sigma_1\sigma_2S_1S_2\frac{\partial^2V}{\partial S_1\partial S_2})dt+\sigma_1S_1\frac{\partial V}{\partial S_1}dX_1+\sigma_2S_2\frac{\partial V}{\partial S_2}dX_2dV=(∂t∂V+μ1S1∂S1∂V+μ2S2∂S2∂V+21σ12S12∂S12∂2V+21σ22S22∂S22∂2V+ρσ1σ2S1S2∂S1∂S2∂2V)dt+σ1S1∂S1∂VdX1+σ2S2∂S2∂VdX2
本文详细介绍了伊藤公式在不同情况下的应用,包括隐式和显式时间参数的随机过程,以及多因子模型中的扩展。涵盖了伊藤公式的基本原理、几何布朗运动下的应用、以及多变量情况下的推广。
1万+

被折叠的 条评论
为什么被折叠?



