POJ1221 UNIMODAL PALINDROMIC DECOMPOSITIONS

                                                  UNIMODAL PALINDROMIC DECOMPOSITIONS
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 2893 Accepted: 1335

Description

A sequence of positive integers is Palindromic if it reads the same forward and backward. For example:
23 11 15 1 37 37 1 15 11 23
1 1 2 3 4 7 7 10 7 7 4 3 2 1 1
A Palindromic sequence is Unimodal Palindromic if the values do not decrease up to the middle value and then (since the sequence is palindromic) do not increase from the middle to the end For example, the first example sequence above is NOT Unimodal Palindromic while the second example is.
A Unimodal Palindromic sequence is a Unimodal Palindromic Decomposition of an integer N, if the sum of the integers in the sequence is N. For example, all of the Unimodal Palindromic Decompositions of the first few integers are given below:
1: (1)
2: (2), (1 1)
3: (3), (1 1 1)
4: (4), (1 2 1), (2 2), (1 1 1 1)
5: (5), (1 3 1), (1 1 1 1 1)
6: (6), (1 4 1), (2 2 2), (1 1 2 1 1), (3 3),
(1 2 2 1), ( 1 1 1 1 1 1)
7: (7), (1 5 1), (2 3 2), (1 1 3 1 1), (1 1 1 1 1 1 1)
8: (8), (1 6 1), (2 4 2), (1 1 4 1 1), (1 2 2 2 1),
(1 1 1 2 1 1 1), ( 4 4), (1 3 3 1), (2 2 2 2),
(1 1 2 2 1 1), (1 1 1 1 1 1 1 1)

Write a program, which computes the number of Unimodal Palindromic Decompositions of an integer.

Input

Input consists of a sequence of positive integers, one per line ending with a 0 (zero) indicating the end.

Output

For each input value except the last, the output is a line containing the input value followed by a space, then the number of Unimodal Palindromic Decompositions of the input value. See the example on the next page.

Sample Input

2
3
4
5
6
7
8
10
23
24
131
213
92
0

Sample Output

2 2
3 2
4 4
5 3
6 7
7 5
8 11
10 17
23 104
24 199
131 5010688
213 1055852590
92 331143

Source

这个题目我想了很久,开始就认为是DP,后来证实我是对的。通过慢慢地在纸上演算终于找到它的公式
s[i][j]=s[i-2*j][j]+s[i][j+1];
在经过一个小时慢慢地写程序和调试终于将程序搞好了,下面是我的程序:
#include<iostream>
#include<cstring>
using namespace std;
__int64 m[301][301];
int main()
{
    int i,j,n;
    memset(m,0,sizeof(m));
    for(i=1;i<=300;i++)
    {
           for(j=i;j>=0;j--)
               m[i][j]=1;
    }
    for(i=0;i<=300;i++)
         m[0][i]=1;
    for(i=2;i<=300;i++)
    {
           for(j=i/2;j>=1;j--)
           {
               m[i][j]=m[i-2*j][j]+m[i][j+1];
               //cout<<"m["<<i<<"]["<<j<<"]"<<endl;
               //cout<<m[i][j]<<endl;
           }
    }                         
    while(cin>>n&&n!=0)
    {
        cout<<n<<" "<<m[n][1]<<endl;
    }
    return 0;
}        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值