(java)Bulb Switcher

本文探讨了一个经典的灯泡开关问题,通过逐步优化算法从因子计数到寻找完全平方数的方法,最终实现高效的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:(开灯关灯的问题,轮训)

There are n bulbs that are initially off. You first turn on all the bulbs. Then, you turn off every second bulb. On the third round, you toggle every third bulb (turning on if it's off or turning off if it's on). For the ith round, you toggle every i bulb. For the nth round, you only toggle the last bulb. Find how many bulbs are on after n rounds.

Example:

Given n = 3.

At first, the three bulbs are [off, off, off].
After first round, the three bulbs are [on, on, on].
After second round, the three bulbs are [on, off, on].
After third round, the three bulbs are [on, off, off].

So you should return 1, because there is only one bulb is on.

(1)最后整理的思路:先N以内所有数的因子有多少个,如果是奇数个就count++;

 public static int bulbSwitch(int n) {
		 int[] temp=new int[n+1];
		 for(int i=1;i<=n;i++){
			 for(int j=2;i*j<=n;j++){
				 temp[i*j]++;
			 }
		 }
		 int count=0;
		 for(int i=1;i<=n;i++){
			 if(temp[i]%2==0){
				 count++;
			 }
		 }
		 return count;
	 }


  (2)超时,进而思路:N以内只有是能开方的数的因子才是奇数个,所以求N以内能开方(完全平方数比如4,9,16......)的数的个数就行

public class Solution {
    public int bulbSwitch(int n) {
       int count=0;
		 for(int i=1;i<=n;i++){
			 if(i==(int)Math.sqrt(i)*(int)Math.sqrt(i)){
				 count++;
			 }
		 }
		 return count;
    }
}


(3)超时,进而思路,,直接求个数(网上更简洁的方式是return Math.sqrt(N))

public class Solution {
    public int bulbSwitch(int n) {
       int count=0;
		 for(int i=1;i*i<=n;i++){
				 count++;
		 }
		 return count;
    }
}


   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值