UVA 11538 Chess Queen

本文探讨了一个经典的棋盘问题,即在一个N×M的棋盘上放置两个皇后,并计算有多少种方式使得这两个皇后能够互相攻击。文章提供了详细的算法思路及代码实现。

You probably know how the game of chess is played and how chess queen operates. Two chess queens
are in attacking position when they are on same row, column or diagonal of a chess board. Suppose
two such chess queens (one black and the other white) are placed on (2 × 2) chess board. They can be
in attacking positions in 12 ways, these are shown in the picture below:
Figure: in a (2 × 2) chessboard 2 queens can be in attacking position in 12 ways
Given an (N × M) board you will have to decide in how many ways 2 queens can be in attacking
position in that.
Input
Input file can contain up to 5000 lines of inputs. Each line contains two non-negative integers which
denote the value of M and N (0 < M, N ≤ 106
) respectively.
Input is terminated by a line containing two zeroes. These two zeroes need not be processed.
Output
For each line of input produce one line of output. This line contains an integer which denotes in how
many ways two queens can be in attacking position in an (M × N) board, where the values of M and
N came from the input. All output values will fit in 64-bit signed integer.
Sample Input
2 2
100 223
2300 1000
0 0
Sample Output
12
10907100
11514134000


【分析】
写一写刘汝佳放松心情…
题意:给你一个n*m的棋盘,放两个皇后,问有多少种放法可以使两个皇后相互攻击。注意两个皇后本质不同。
考虑横着攻击,竖着攻击,斜着攻击,累加得到答案。


【代码】

#include<iostream>
#include<cstring>
#include<cstdio>
#define ll long long
#define M(a) memset(a,0,sizeof a)
#define fo(i,j,k) for(i=j;i<=k;i++)
using namespace std;
const int mxn=100005;
unsigned long long n,m,ans;
int main()
{
    int i,j;
    while(cin>>n>>m)
    {
        if(!n && !m) return 0;
        if(n>m) swap(n,m);
        cout<<n*m*(n+m-2)+2*(m-n+1)*n*(n-1)+2*n*(n-1)*(n+n-1)/3-2*n*(n-1)<<endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值