poj 2478 Farey Sequence

本文介绍了一种利用欧拉函数和前缀和的方法来高效计算Farey序列中项的数量。通过具体实例展示了如何计算特定整数n内的互质数对数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Farey Sequence

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 15288 Accepted: 6070

Description

The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}

You task is to calculate the number of terms in the Farey sequence Fn.

Input

There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 106). There are no blank lines between cases. A line with a single 0 terminates the input.

Output

For each test case, you should output one line, which contains N(n) —- the number of terms in the Farey sequence Fn.

Sample Input
2
3
4
5
0

Sample Output
1
3
5
9


【分析】
题意:求n以内有多少对互质的数
欧拉函数+前缀和。
刷yhx的水题真是令人愉悦…


【代码】

//poj 2478 Farey Sequence
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define LL long long
#define fo(i,j,k) for(i=j;i<=k;i++)
using namespace std;
const int n=1e6;
int phi[n+5],p[n+5],k;
bool vis[n+5];
LL ans[n+5];
void get()
{
    int i,j;
    fo(i,2,n)
    {
        if(!vis[i]) p[++p[0]]=i,phi[i]=i-1;
        for(j=1;j<=p[0] && i*p[j]<=n;j++)
        {
            vis[i*p[j]]=1;
            if(i%p[j]==0)
            {
                phi[i*p[j]]=phi[i]*p[j];
                break;
            }
            else phi[i*p[j]]=phi[i]*(p[j]-1);
        }
        ans[i]=ans[i-1]+phi[i];
    }
}
int main()
{
    get();
    while(scanf("%d",&k) && k)
      printf("%lld\n",ans[k]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值